算法时间复杂度分析

一、算法复杂度

算法是为求解一个问题需要遵循的、被清楚指定的简单指令的集合,简单来说就是解决特定问题求解步骤的描述。对于一个问题,一旦某种算法给定并且是正确的,那么重要的一步,就是确定该算法将需要多少时间或者空间等资源量的问题。如果一个问题的求解算法竟然需要长达一年的时间,那么这种算法就很难有什么用处了,同样,一个需要若干个GB内存的算法在当前大多数机器上也是无法使用的。

算法复杂度分为时间复杂度和空间复杂度

  • 时间复杂度是指执行这个算法所需要的计算工作量
  • 空间复杂度是指执行这个算法所需要的内存空间

二、时间复杂度

1.时间复杂度的概念

首先分析算法的时间复杂度,使用大O表示法,其核心思想是:所有代码的执行时间与代码的执行次数成正比,可以使用以下公式来表达:

                                T(n) = O( f(n) )

对该公式的解释如下:

  • T(n) 表示算法中语句的执行次数
  • n 表示数据规模的大小,数据规模n不同,代码的执行时间T(n)也会随之而改变
  • f(n)  算法的基本操作(执行次数最多的那条语句)重复执行的次数 

在进行算法分析时,代码的总执行时间T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,记作:T(n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,大O时间复杂度实际

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值