一、算法复杂度
算法是为求解一个问题需要遵循的、被清楚指定的简单指令的集合,简单来说就是解决特定问题求解步骤的描述。对于一个问题,一旦某种算法给定并且是正确的,那么重要的一步,就是确定该算法将需要多少时间或者空间等资源量的问题。如果一个问题的求解算法竟然需要长达一年的时间,那么这种算法就很难有什么用处了,同样,一个需要若干个GB内存的算法在当前大多数机器上也是无法使用的。
算法复杂度分为时间复杂度和空间复杂度
- 时间复杂度是指执行这个算法所需要的计算工作量
- 空间复杂度是指执行这个算法所需要的内存空间
二、时间复杂度
1.时间复杂度的概念
首先分析算法的时间复杂度,使用大O表示法,其核心思想是:所有代码的执行时间与代码的执行次数成正比,可以使用以下公式来表达:
T(n) = O( f(n) )
对该公式的解释如下:
- T(n) 表示算法中语句的执行次数
- n 表示数据规模的大小,数据规模n不同,代码的执行时间T(n)也会随之而改变
- f(n) 算法的基本操作(执行次数最多的那条语句)重复执行的次数
在进行算法分析时,代码的总执行时间T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,记作:T(n)= O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,大O时间复杂度实际