初探kNN

概述

k近邻的思想就是:对于任意一个新的样本点,我们可以在这M个已知类别标签的样本点中选取K个与其距离最接近的点作为它的最近邻点,然后统计这个K个最近邻点的类别标签,采取多数投票表决的方式,即把这K个最近老点中绝大多数类别的点所对应的类别拿来当作要预测点的类别。

k近邻分类原理

k近邻模型主要有三个要素,即K值的选择、距离的度量方法、分类决策规则。

K值的选择

K值的选择会对k近邻法的结果产生较大影响:

如果K值选得较小,这种情况下得到的模型,只有与训练实例比较靠近的实例才会对预测结果起作用,理论上来说,学习的近似误差会比较小。缺点是模型估计误差比较大,预测结果对少部分邻近的实例点十分敏感。

如果K值选得太大,相当于使用一个比较大的邻域中的训练实例来训练模型。优点可以降低学习的估计误差,缺点是学习的近似误差会增大,因为这种情况下与输入较远的训练实例也会对预测起作用。

距离度量

度量距离的方式有多种:

  • 闵可夫斯基距离
    • 曼哈顿距离(p = 1)
    • 欧氏距离(p = 2)
  • 汉明距离
    需要注意的是,在使用距离度量之前,一般应先对数据做归一化处理。如果不做归一化处理,那些取值较小但实际比较重要的特征参数的作用可能就会被掩盖掉。

分类决策规则

k近邻中主要使用的是多数表决规则。

优化

在实际实现k近邻法时,还需要考虑计算过程优化问题。如,在训练数据量较多或特征空间的维数较大时,如果直接采用暴力计算的方式去遍历所有点来确定K个最近邻点,则明显计算开销过大的。
为了提高计算效率,可以考虑使用特殊的数据结构来组织和存储训练数据。KD树就是一个方法。

小结

优点

  • 简单易于实现
  • 比较适合多分类问题
  • 对异常值不敏感
  • 无数据输入假定

缺点

  • 预测精度一般
  • 当样本存在范围重叠时,k近邻的分类精度很低
  • 即便分类一个样本也要计算所有数据,在大数据环境下很不适应
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值