概念
Wilcoxon 符号秩检验的检验目的和符号检验是一样的,但 Wilcoxon 符号秩检验需要假设样本点来自连续对称总体分布,在这个假设下总体的对称中心是总体中位数之一。Wilcoxon 符号秩检验就是要检验双边问题 H0 :M = M0 或检验单边问题 H0 :M ≤ M0 及 H0 :M ≥ M0 。
在检验两样本时,Wilcoxon 符号秩检验也是检验两样本中心位置是否相等的方法,不过要求两样本量相等。
实例 & 代码
为了解垃圾邮件对大型公司决策层的工作影响程度,某网站收集了19家大型公司的CEO和他们邮箱里每天收到的垃圾邮件件数,得到如下数据(单位:封):
310,350,370,377,389,400,415,425,440,295,325,296,250,340,298,365,375,360,385
从平均意义上来看,垃圾邮件数量的中心位置是否超过320封?显著性水平为0.05。
解答:
import scipy.stats as stats
x=[310,350,370,377,389,400,415,425,440,295,325,296,250,340,298,365,375,360,385]
y=[320]*len(x)
stats.wilcoxon(x,y,correction=True,alternative='greater')
结果如下:
WilcoxonResult ( statistic = 158.0, pvalue = 0.005949317582258638 )
由p值小于0.05,可以认为垃圾邮件数量的中心位置超过了320封。
scipy.stats.wilcoxon() 参数解析
scipy.stats.wilcoxon( x, y, correction = Flase, alternative = ‘two-sided’ )
- x:第一组测量值(在这种情况下,y是第二组测量值),或者在两组测量值之间的差(在这种情况下,不指定y)。必须是一维的。
- y:第二组测量值(如果x是第一组测量值),或者未指定(如果x是两组测量值之间的差)。必须是一维的。
- correction:如果为True,则是在小样本情况下,在计算Z统计量时用0.5来连续性校正。默认值为False。
- alternative:等于 “two-sided” 或 “greater” 或 “less”。“two-sided” 为双边检验,“greater” 为备择假设是大于的单边检验,“less” 为备择假设是小于的单边检验。