Python玩转数据分析——双因素方差分析

本文介绍了Python在双因素方差分析中的应用,分别展示了无交互作用和有交互作用情况下的数据分析过程,通过实例解释如何利用Python进行数据导入和统计分析,揭示不同因素对销量和火箭射程的显著影响。
摘要由CSDN通过智能技术生成

概念

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著性检验。双因素方差分析即影响试验的因素有两个,且分为无交互作用和有交互作用两种情况。

一、无交互作用的情况

由于不考虑交互作用的影响,对每一个因素组合 ( Ai , Bj ) 只需进行一次独立试验,称为无重复试验

准备数据

考虑三种不同形式的广告和五种不同的价格对某种商品销量的影响。选取某市15家大超市,每家超市选用其中的一个组合,统计出一个月的销量如下(设显著性水平为0.05):在这里插入图片描述
将数据导入python,代码如下:

dic_t2=[{
   '广告':'A1','价格':'B1','销量':276},{
   '广告':'A1','价格':'B2','销量':352},
       {
   '广告':'A1','价格':'B3','销量':178},{
   '广告':'A1','价格':'B4','销量':295},
       {
   '广告':'A1','价格':'B5','销量':273},{
   '广告':'A2','价格':'B1','销量':114},
       {
   '广告':'A2','价格':'B2','销量':176},{
   '广告':'A2','价格':'B3','销量':102},
       {
   '广告':'A2','价格':'B4','销量':155},{
   '广告':'A2','价格':'B5','销量':128},
       {
   '广告':'A3','价格':'B1','销量':364},{
   '广告':'A3','价格':'B2','销量':547},
       {
   '广告':'A3','价格':'B3','销量':288},{
   '广告':'A3','价格':'B4','销量':392},
       {
   '广告':'A3','价格':'B5','销量':378}]
df_t2=pd.DataFrame(dic_t2,columns=['广告','价格','销量'])

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值