- 博客(11)
- 问答 (2)
- 收藏
- 关注
原创 深入理解卷积神经网络(CNN)——从原理到实现
王琦 QQ:451165431 计算机视觉&深度学习转载请注明出处 :http://blog.csdn.net/Rainbow0210/article/details/78562926。本篇通过在MNIST上的实验,引出卷积神经网络相关问题,详细阐释其原理以及常用技巧、调参方法。欢迎讨论相关技术&学术问题,但谢绝拿来主义。代码是博主自己写的,因为倾向于详细阐述底层原理,所
2017-11-17 16:36:59 7126 3
原创 深入理解人工神经网络——从原理到实现
王琦 QQ:451165431 计算机视觉&深度学习转载请注明出处。本篇通过在MNIST上的实验,引出神经网络相关问题,详细阐释其原理以及常用技巧、调参方法。欢迎讨论相关技术&学术问题,但谢绝拿来主义。实验概述数据集MNIST:0-9共10个数字,其中,60000条训练样本,10000条测试样本,每条样本分辨率为28×2828\times28。拉伸为11维向量,因而为28×28=7
2017-10-30 20:06:28 5123
原创 深入理解卷积神经网络(卷积篇)(Convolutional Neural Networks, CNNs)
概述卷积神经网络,也称为卷积网络,简称CNN,是神经网络的一种。其可用于一维时间序列的处理,也可以用于二维(如图像)序列的处理。目前,卷积神经网络可以说是应用最为广泛、效果最为出众的方法之一。相比于普通的神经网络,其将传统的矩阵乘法改为卷积运算,这也是其名字的由来。卷积操作定义两个实值函数 x(t)x(t) , w(t)w(t) 则其卷积定义为: s(t)=∫x(a)w(t−a)das(t) =
2016-12-19 23:53:58 9505 1
原创 基于ACF多通道特征的人脸检测——从原理到实现
首先说明一下,这个项目并不是博主在实验室负责的项目,而是博主的一门两学分的课的大作业(张学工老师的模式识别基础,有兴趣的可以百度一下),所以并没有投入太多时间去弄,还有很多地方可以改进,后文会陆续提到,也会指明改进的方法。然后博主只是个大三的学生,实现的一些不足还希望多包涵。这个检测的程序主要是针对多人大图像的人脸检测(30-100人,1000*2000pixel以上),博主用一张1800*3600
2016-12-12 19:26:09 15667 6
原创 压缩感知之匹配跟踪算法(MP&OMP)
压缩感知近些年在学术界非常火热,在信号处理领域取得了很多非常不错的成果。博主最近的项目涉及到K-SVD算法,所以也就顺带着学习其重要的组成部分——匹配跟踪算法。本文只介绍最基本的匹配跟踪算法和正交匹配跟踪算法,即MP和OMP。这个算法的优化和变形非常之多,近些年学术界很多人都在研究这个,有兴趣的读者可以自行查阅相关论文,本文不多做阐述。废话少说,直接上干货。所谓压缩感知,从名字就可以理解,压缩,即为
2016-11-29 00:54:42 10502 3
原创 深度学习-深度信念(置信)网络(DBN)-从原理到实现(DeepLearnToolBox)
深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于无监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。首先来了解一下受限玻尔兹曼机(RBM): RBM是一种神经感知器,由一个显层和一个隐层构成,显层与隐层的神经元之间为双向全连接。如下图所示
2016-11-02 19:00:56 70293 54
原创 线性分类器之感知器模型(Perceptron)
前文提到,Fisher判别器的设计一般分两步,一是确定最优的投影方向,二是在投影方向上确定阈权值。而感知器则是一种直接得到完整的线性判别函数g(x)=ωTx+ω0g(x)=\omega_Tx+\omega_0的方法。所以从某种意义上将,感知器模型是Fisher判别的一种改进。了解神经网络的人也都知道,感知器是神经网络的基础。首先将线性判别函数齐次化: 设y=[1,x]Ty=[1,x]^T,α=[ω
2016-10-23 13:59:07 10049
转载 回归和梯度下降
回归(regression)、梯度下降(gradient descent)博主看到的很好的关于回归和梯度下降的文章,于是 不过后面求偏导似乎少个求和号。本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。前言:上次写过一篇
2016-10-23 00:15:15 579
原创 最大似然估计(MLE)
首先来看一个例子,设有两个完全相同的盒子A和B,其中,盒子A中有99个白球,1个黑球;盒子B中有99个黑球,一个白球。今随机抽取一箱,并从中抽取一球,结果取得的是白球,问这个球从哪个箱子取出?
2016-10-22 23:09:09 1519
原创 线性分类器之Fisher线性判别
在前文《贝叶斯决策理论》中已经提到,很多情况下,准确地估计概率密度模型并非易事,在特征空间维数较高和样本数量较少的情况下尤为如此。 实际上,模式识别的目的是在特征空间中设法找到两类(或多类)的分类面,估计概率密度函数并不是我们的目的。 前文已经提到,正态分布情况下,贝叶斯决策的最优分类面是线性的或者是二次函数形式的,本文则着重讨论线性情况下的一类判别准则——Fisher判别准则。为了避免陷入复杂
2016-10-22 15:59:03 29185 5
原创 贝叶斯决策理论
贝叶斯决策理论对于模式识别的方法,大体可以分为基于知识和基于数据的两类。所谓基于知识的方法,主要以专家系统为代表,一般归于人工智能的范畴;而基于数据的方法,则可归于基于数据的机器学习。基于数据的方法,基础是统计模式识别,即依据统计的原理来建立分类器。 说到统计,则不得不谈到概率,这里罗列一些概率论的机器学习中的基本概念,百度都可以查到,不再赘述: 样本、样本集、类(类别)、特征、已知样本
2016-10-21 14:20:26 9816 1
空空如也
JavaScript问题求教,一个小程序
2016-07-05
JavaScript问题求教,一个小程序
2016-07-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人