最大似然估计(MLE)

博主分享了在学习机器学习过程中对最大似然估计的理解,指出学校教学中对此概念的忽视。通过举例说明最大似然估计的概念,即找到使事件发生概率最大的参数估计。还提到了在多参数或数据缺失情况下,最大似然估计的困难,以及1977年Dempster提出的EM算法作为解决方法,但未深入展开。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主在学习机器学习的时候常常感受到自己数学知识的匮乏。故会逐步总结与机器学习相关的数学知识,发布于此。
这里吐槽一下,博主的学校虽然名气很高,但是对于概率论这样的基础学科讲解的却很不到位。这里分析原因主要有下:
- 专业课业压力重导致概率论只有一学期的课程并且只有三个学分,换言之,只有48*45分钟,这种短时的学习周期并不能兼顾速度与质量,而老师选择了质量,导致大量的知识点直接被略过,比如此文的最大似然估计。
- 老师是数学系的,听课的学生也来自不同的专业,导致有很多和计算机相关的理论并没有着重讲,反而一些和计算机不太相关的理论讲了很多。


吐槽结束,进入正题。

首先来看一个例子,设有两个完全相同的盒子A和B,其中,盒子A中有99个白球,1个黑球;盒子B中有99个黑球,一个白球。今随机抽取一箱,并从中抽取一球,结果取得的是白球,问这个球从哪个箱子取出?

对于这个例子,想必大多人会说,是从盒子A中取出的,因为盒子A中有99%是白球,而盒子B中的白球仅占1%,所以盒子A的可能性远远大于B。换言之,这个球“更像”盒子A中取出的。这里的“更像”即为最大似然之原意。(’最大似然’这个名字听起来更高大上,仅此而已)。

所以说起来,最大似然估计就是让出现这件事情的概率达到最大的那个假设。
当然,问题不会总是这么简单。我们再来看一个例子。

我们用随机变量X来表示某产品经过检查后的不合格数,X=0为合格,X=1为不合格,那么X则服从二点分布,即X~b(1,p),这里p为不合格率(二点分布的意思就是合格的概率是1-p,不合格的概率是p)。先抽取n各产品,检查结果为 x1,x2,...,xn ,让我们估计p的大小。
首先,检查结果为 x1,x2,...,xn 的概率为:

L(p)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值