博主在学习机器学习的时候常常感受到自己数学知识的匮乏。故会逐步总结与机器学习相关的数学知识,发布于此。
这里吐槽一下,博主的学校虽然名气很高,但是对于概率论这样的基础学科讲解的却很不到位。这里分析原因主要有下:
- 专业课业压力重导致概率论只有一学期的课程并且只有三个学分,换言之,只有48*45分钟,这种短时的学习周期并不能兼顾速度与质量,而老师选择了质量,导致大量的知识点直接被略过,比如此文的最大似然估计。
- 老师是数学系的,听课的学生也来自不同的专业,导致有很多和计算机相关的理论并没有着重讲,反而一些和计算机不太相关的理论讲了很多。
吐槽结束,进入正题。
首先来看一个例子,设有两个完全相同的盒子A和B,其中,盒子A中有99个白球,1个黑球;盒子B中有99个黑球,一个白球。今随机抽取一箱,并从中抽取一球,结果取得的是白球,问这个球从哪个箱子取出?
对于这个例子,想必大多人会说,是从盒子A中取出的,因为盒子A中有99%是白球,而盒子B中的白球仅占1%,所以盒子A的可能性远远大于B。换言之,这个球“更像”盒子A中取出的。这里的“更像”即为最大似然之原意。(’最大似然’这个名字听起来更高大上,仅此而已)。
所以说起来,最大似然估计就是让出现这件事情的概率达到最大的那个假设。
当然,问题不会总是这么简单。我们再来看一个例子。
我们用随机变量X来表示某产品经过检查后的不合格数,X=0为合格,X=1为不合格,那么X则服从二点分布,即X~b(1,p),这里p为不合格率(二点分布的意思就是合格的概率是1-p,不合格的概率是p)。先抽取n各产品,检查结果为 x1,x2,...,xn ,让我们估计p的大小。
首先,检查结果为 x1,x2,...,xn 的概率为: