封装完后的优化版,复杂度O(mlogn),n表示点数,m表示边数:
链式前向星写法:
#include<bits/stdc++.h>
#define ll long long
#define white 0
#define black 1
#define grey 2
#define endl '\n'
#define INF 0x3f3f3f3f3f
#define IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
const int maxn=1e5+5;
int tot,head[maxn];
struct E{
int to,next,w;
}edge[maxn<<1];
void add(int u,int v,int w){
edge[tot].to=v;
edge[tot].w=w;
edge[tot].next=head[u];
head[u]=tot++;
}
ll d[maxn];ll color[maxn];
priority_queue<pair<ll,ll> >q;
ll n,m,s;int pre[maxn],id[maxn];
void Dijkstra(ll s){
for(ll i=0;i<=n;i++) pre[i]=s,d[i]=INF,color[i]=white;
d[s]=0;
q.push(make_pair(0,s));
color[s]=grey;
while(!q.empty()){
pair<ll,ll> f=q.top();
q.pop();
ll u=f.second;
color[u]=black;
if(d[u]<f.first*(-1)) continue;
for(ll i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;
if(color[v]==black) continue;
if(d[v]>d[u]+edge[i].w){
d[v]=d[u]+edge[i].w;
q.push(make_pair(d[v]*(-1),v));
color[v]=grey;
pre[v]=u;//表示最终最短路中v的前缀是u
id[v]=i;//表示最终最短路中指向v这个点的边号是i
}
}
}
}
int main(){
cin>>n>>m>>s;
memset(head,-1,sizeof(head));
for(ll i=1;i<=m;i++){
ll u,v,w;cin>>u>>v>>w;
add(u,v,w);add(v,u,w);
}
Dijkstra(s);
for(ll i=1;i<=n;i++){
cout<<d[i]<<" ";
}
cout<<endl;
int temp=n;//输出以temp点终点构成最短路的前缀
while(temp!=s){
cout<<temp<<" ";
temp=pre[temp];
}
}
封装后的朴素Dijk算法,时间复杂度O(n^2+m),n表示点数,m表示边数:
#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
#define white 0
#define black 1
#define grey 2
using namespace std;
const int INF=0x3f3f3f3f;
const int mod=142857;
const int maxn=5050;
ll dis[maxn][maxn],d[maxn],color[maxn];
ll n,m,s;
void dijkstra(ll s){
for(ll i=0;i<=n;i++){
d[i]=INF;color[i]=white;
}
d[s]=0;color[s]=grey;
while(1){
ll mind=INF,u=-1;
for(ll i=1;i<=n;i++){
if(color[i]!=black&&d[i]<mind){
mind=d[i];
u=i;
}
}
if(u==-1) break;
color[u]=black;
for(ll v=1;v<=n;v++){
if(color[v]!=black&&dis[u][v]!=INF){
if(d[v]>d[u]+dis[u][v]){
d[v]=d[u]+dis[u][v];
color[v]=grey;
}
}
}
}
}
int main(){
cin>>n>>m>>s;
for(ll i=0;i<maxn;i++){
for(ll j=0;j<maxn;j++){
dis[i][j]=INF;
if(i==j) dis[i][j]=0;
}
}
for(ll i=1;i<=m;i++){
ll u,v,w;cin>>u>>v>>w;
if(w<=dis[u][v]) dis[u][v]=dis[v][u]=w;
}
dijkstra(s);
for(ll i=1;i<=n;i++) cout<<d[i]<<" ";
}
/*
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
*/
//output 0 2 4 3
vector写法:
#include<bits/stdc++.h>
#define ll long long
#define white 0
#define black 1
#define grey 2
#define endl '\n'
#define INF 0x3f3f3f3f3f
#define IO ios::sync_with_stdio(false);cin.tie(0);
using namespace std;
const int maxn=1e5+5;
ll d[maxn];ll color[maxn];
vector<pair<ll,ll> >vec[maxn];
priority_queue<pair<ll,ll> >q;
ll n,m,s;
void Dijkstra(ll s){
for(ll i=0;i<=n;i++) d[i]=INF,color[i]=white;
d[s]=0;
q.push(make_pair(0,s));
color[s]=grey;
while(!q.empty()){
pair<ll,ll> f=q.top();
q.pop();
ll u=f.second;
color[u]=black;
if(d[u]<f.first*(-1)) continue;
for(ll i=0;i<vec[u].size();i++){
ll v=vec[u][i].first;
if(color[v]==black) continue;
if(d[v]>d[u]+vec[u][i].second){
d[v]=d[u]+vec[u][i].second;
q.push(make_pair(d[v]*(-1),v));
color[v]=grey;
}
}
}
}
int main(){
cin>>n>>m>>s;
for(ll i=1;i<=m;i++){
ll u,v,w;cin>>u>>v>>w;
vec[u].push_back(make_pair(v,w));
vec[v].push_back(make_pair(u,w));
}
Dijkstra(s);
for(ll i=1;i<=n;i++){
cout<<d[i]<<" ";
}
cout<<endl;
}
优化版的最先队列代码板子写法:
#include<iostream>
#include<algorithm>
#include<queue>
#define MAX 100005
#define INF 0x3f3f3f3f
#define WHITE 0
#define BLACK 1
#define GRAY 2
using namespace std;
int n,e;//n为顶点个数,e为边数
vector<pair<int,int> > adj[MAX];//有向加权图的邻接矩阵表示
int d[MAX];
void dijkstra(int s){//使用优先队列优化的dijkstra
priority_queue<pair<int,int> > pq;//优先队列pq
int color[MAX];//color数组
for(int i=0;i<=n;i++){//初始化
d[i]=INF;
color[i]=WHITE;
}
d[s]=0;//s到自身的距离为0
pq.push(make_pair(0,s));//入队列
color[s]=GRAY;
while(!pq.empty()){//队列非空
pair<int,int> f=pq.top();//取出队首元素,一定是d最小的
pq.pop();
int u=f.second;//u等于取出d最小元素的编号
color[u]=BLACK;//访问u
if(d[u]<f.first*(-1)){//取出最小值,如果不是最短路径则忽略
continue;
}
for(int j=0;j<adj[u].size();j++){//访问u的邻接列表
int v=adj[u][j].first;//v等于u邻接列表中元素的编号
if(color[v]==BLACK){//若已经访问,则跳过
continue;
}
if(d[v]>d[u]+adj[u][j].second){//松弛操作
d[v]=d[u]+adj[u][j].second;
pq.push(make_pair(d[v]*(-1),v));//入队列
color[v]=GRAY;
}
}
}
}
int main(){
int s;
cin>>n>>e>>s;
int a,b,len;
for(int i=0;i<e;i++){//读入邻接列表
cin>>a>>b>>len;
adj[a].push_back(make_pair(b,len));
adj[b].push_back(make_pair(a,len)); //如果是单向连接就去掉
}
dijkstra(s);
for(int i=1;i<=n;i++){
if(d[i]==INF) cout<<"2147483647 ";
else cout<<d[i]<<' ';
}
return 0;
}
非优化版,小心MLE
#include<iostream>
#define MAX 10005
#define WHITE 0
#define BLACK 1
#define GRAY 2
#define INF 0x3f3f3f3f
using namespace std;
int n,e;//n为顶点个数,e为边数
int m[MAX][MAX];//m为图的邻接矩阵
int d[MAX];//d[]数组
int color[MAX];//访问数组
void dijkstra(int s){
int minv;
for(int i=0;i<=n;i++){//初始化
color[i]=WHITE;
d[i]=INF;
}
d[s]=0;//起始点的d为0
color[s]=GRAY;//访问起始点
while(1){
minv=INF;
int u=-1;
for(int i=1;i<=n;i++){//找到图中d[i]最小的点
if(minv>d[i]&&color[i]!=BLACK){
u=i;
minv=d[i];
}
}
if(u==-1){//若所有点都已经访问,则跳出循环
break;
}
color[u]=BLACK;//访问u结点
for(int v=1;v<=n;v++){//松弛操作
if(color[v]!=BLACK&&m[u][v]!=INF){
if(d[v]>d[u]+m[u][v]){
d[v]=d[u]+m[u][v];
color[v]=GRAY;
}
}
}
}
}
int main(){
int s;//起点
cin>>n>>e>>s;
int a,b,len;
for(int i=0;i<MAX;i++){//m[][]初始化
for(int j=0;j<MAX;j++){
m[i][j]=INF;
}
}
for(int i=0;i<e;i++){//读入数据
cin>>a>>b>>len;
if(m[a][b]>len){
m[a][b]=len;
m[b][a]=len;//如果是双向图就加上这一行,否则去掉
}
}
dijkstra(s);//求s到其他点的最短路径
for(int i=1;i<=n;i++){
if(d[i]==INF) cout<<"2147483647 ";
else cout<<d[i]<<' ';
}
return 0;
}