Dijkstra算法图文详解

Dijkstra算法

Dijkstra算法算是贪心思想实现的,首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。

问题引入:

指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。

 

 下面我们来模拟一下:

 这就是Dijkstra算法的基本思路:

接下来是代码:

已经把几个过程都封装成了基本模块:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f

using namespace std;

int map[1005][1005];

int vis[1005],dis[1005];
int n,m;//n个点,m条边

void Init ()
{
	memset(map,Inf,sizeof(map));
	for(int i=1;i<=n;i++)
	{
		map[i][i]=0;
	}
}

void Getmap()
{
	int u,v,w;
    for(int t=1;t<=m;t++)
	{
	  	scanf("%d%d%d",&u,&v,&w);
	  	if(map[u][v]>w)
		  {
		  map[u][v]=w;
		  map[v][u]=w;
	      }
	}	
	
}

void Dijkstra(int u)
{
	memset(vis,0,sizeof(vis));
	for(int t=1;t<=n;t++)
	{
		dis[t]=map[u][t];
	}
	vis[u]=1;
	for(int t=1;t<n;t++)
	{
		int minn=Inf,temp;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i]&&dis[i]<minn)
			{
				minn=dis[i];
				temp=i;
			}
		}
		vis[temp]=1;
		for(int i=1;i<=n;i++)
		{
			if(map[temp][i]+dis[temp]<dis[i])
			{
				dis[i]=map[temp][i]+dis[temp];
			}
		}
	}
	
}

int main()
{
	
	scanf("%d%d",&m,&n);
	Init();
	Getmap();
	Dijkstra(n);
	printf("%d\n",dis[1]);
	
	
	return 0;
}

### Dijkstra算法概述 Dijkstra算法是一种用于在加权图中找到单个源点到所有其他顶点的最短路径的经典算法[^1]。此算法适用于有向图和无向图,但要求图中的边权重必须是非负数。 ### 算法实现代码 以下是Python版本的Dijkstra算法实现: ```python import sys from heapq import heappop, heappush def dijkstra(graph, start): n = len(graph) dist = [sys.maxsize] * n # 初始化距离数组,默认为无穷大 prev = [-1] * n # 记录前驱结点以便构建最终路径 visited = [False] * n # 节点访问标记 pq = [(0, start)] # 小根堆存储待处理节点及其当前最小代价 dist[start] = 0 # 源点到自身的距离设为零 while pq: d, u = heappop(pq) if visited[u]: continue visited[u] = True for v, weight in graph[u].items(): alt = dist[u] + weight if not visited[v] and alt < dist[v]: dist[v] = alt prev[v] = u heappush(pq, (alt, v)) return dist, prev ``` 上述代码实现了基本的优先队列版Dijkstra算法,其中`graph`是一个邻接表表示形式的字典,键是节点编号而值是以目标节点作为键、边权重作为值构成的新字典;`start`参数指定了起始节点索引号。 ### 数据结构说明 - `dist[]`: 存储从起点到达各个节点所需的最小开销; - `prev[]`: 用来记录每个节点的最佳前任节点,方便后续重建最优路径; - `visited[]`: 表明某节点是否已经被正式纳入已知区域; - 使用了二叉堆来高效管理候选集合内的元素。 ### 流程图描述 由于无法直接提供图形化内容,在这里将以文字方式简单描绘该算法的主要操作流程如下: 1. **初始化阶段** - 设置初始位置的成本为0,其余均为无限大。 - 创建一个小顶堆并加入出发点的信息(成本=0)。 2. **迭代过程** - 取出堆顶元素u代表目前考虑扩展的目标。 - 对于每一个邻居v尝试更新其通过u可达时更优解的可能性。 - 如果发现新的更好方案,则调整对应项并将新状态压入堆内等待进一步考察。 3. **终止条件** - 当堆为空时表示已经完成了全部可能路线探索工作。 - 或者当首次遇到终点时可以提前结束遍历动作。 4. **结果整理** - 输出最终求得的最短路长度列表以及反推出来的具体行走轨迹。
评论 98
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

black-hole6

你的鼓励将是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值