Raki的统计学习方法笔记0x3章:k近邻法

k近邻法(k-nearest neighbor,k-NN)是一种基本分类与回归方法。本书只讨论分类问题中的k近邻法。k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。因此,k近邻法不具有显式的学习过程。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量及分类决策规则是k近邻法的三个基本要素。k近邻法1968年由Cover和Hart提出。

模型

k近邻是一种非参数化模型

k近邻法中,当训练集、距离度量(如欧氏距离)、k值及分类决策规则(如多数表决)确定后,对于任何一个新的输入实例,它所属的类唯一地确定。这相当于根据上述要素将特征空间划分为一些子空间,确定子空间里的每个点所属的类。这一事实从最近邻算法中可以看得很清楚。特征空间中,对每个训练实例点ix,距离该点比其他点更近的所有点组成一个区域,叫作单元(cell)。每个训练实例点拥有一个单元,所有训练实例点的单元构成对特征空间的一个划分。最近邻法将实例ix的类iy作为其单元中所有点的类标记(class label)。这样,每个单元的实例点的类别是确定的。

距离度量:
L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p \begin{aligned} \mathbf{L_p(x_i,x_j) = (\sum_{l=1}^n|x_i^{(l)} - x_j^{(l)}|^p)^{\frac{1}{p}}} \end{aligned} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1

算法

输入:训练数据集:
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } \begin{aligned} T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} \end{aligned} T={(x1,y1),(x2,y2),...,(xN,yN)}

其中, x i ∈ X ⊆ R n x_i \in \mathcal{X} \subseteq \mathbf{R}^n xiXRn 为实例的特征向量, y i ∈ Y y_i \in \mathcal{Y} yiY = { c 1 , c 2 , . . . , c K } \{c_1,c_2,...,c_K\} {c1,c2,...,cK} 为实例的类别, i = 1 , 2 , . . . , N i = 1,2,...,N i=1,2,...,N ;实例特征向量 x x x

输出:实例 x x x 所属的类 y y y
(1)根据给定的距离度量,在训练集 T T T 中找出与 x x x 最邻近的 k k k个点,涵盖这 k k k个点的 x x x
的邻域记作 N k ( x ) N_k(x) Nk(x)
(2)在 N k ( x ) N_k(x) Nk(x) 中根据分类决策规则(如多数表决)决定 x x x 的类别 y y y
y = arg ⁡ max ⁡ c j ∑ x i ∈ N k ( x ) I ( y i = c j ) i = 1 , 2 , . . . , N ; j = 1 , 2 , . . . K \begin{aligned} & y =\mathop{\arg\max}\limits_{c_j}\sum_{x_i \in N_k(x)} I(y_i = c_j) \\ & i=1,2,...,N ; j=1,2,...K& \end{aligned} y=cjargmaxxiNk(x)I(yi=cj)i=1,2,...,N;j=1,2,...K

k值的选择会对k近邻法的结果产生重大影响。

如果选择较小的k值,就相当于用较小的邻域中的训练实例进行预测,“学习”的近似误差(approximation error)会减小,只有与输入实例较近的(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差(estimation error)会增大,预测结果会对近邻的实例点非常敏感[2]。如果邻近的实例点恰巧是噪声,预测就会出错。换句话说,k值的减小就意味着整体模型变得复杂,容易发生过拟合。

如果选择较大的k值,就相当于用较大邻域中的训练实例进行预测。其优点是可以减少学习的估计误差。但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。

如果k=N,那么无论输入实例是什么,都将简单地预测它属于在训练实例中最多的类。这时,模型过于简单,完全忽略训练实例中的大量有用信息,是不可取的。

在应用中,k值一般取一个比较小的数值。通常采用交叉验证法来选取最优的k值。

k近邻法的实现:kd树

输入:k维空间数据集 T = { x 1 , x 2 , … , x N } T=\{x_1,x_2,…,x_N\} T{x1x2,,xN},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( k ) ) T , i = 1 , 2 , . . . , N x_i = (x_i^{(1)},x_i^{(2)},...,x_i^{(k)})^T, i=1,2,...,N xi=(xi(1),xi(2),...,xi(k))T,i=1,2,...,N

输出: k d kd kd
(1)开始:构造根结点,根结点对应于包含 T T T的k维空间的超矩形区域。选择 x x x为坐标轴,以 T T T 中所有实例的 x x x 坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x x x 垂直的超平面实现。
由根结点生成深度为 1 1 1 的左、右子结点:左子结点对应坐标 x x x 小于切分点的子区域,右子结点对应于坐标 x x x 大于切分点的子区域。
将落在切分超平面上的实例点保存在根结点。
(2)重复:对深度为 j j j 的结点,选择 x l x^{l} xl 为切分的坐标轴, l = j % k + 1 l=j\%k+1 lj%k+1,以该结点的区域中所有实例的x坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴x垂直的超平面实现。由该结点生成深度为j+1的左、右子结点:左子结点对应坐标x小于切分点的子区域,右子结点对应坐标x大于切分点的子区域。将落在切分超平面上的实例点保存在该结点。
(3)直到两个子区域没有实例存在时停止,从而形成kd树的区域划分

用kd树的最近邻搜索

输入:已构造 k d kd kd 树,目标点 x x x

输出: x x x 的最近邻

(1)在kd树中找出包含目标点x的叶结点:从根结点出发,递归地向下访问kd树。若目标点x当前维的坐标小于切分点的坐标,则移动到左子结点,否则移动到右子结点。直到子结点为叶结点为止。
(2)以此叶结点为“当前最近点”。
(3)递归地向上回退,在每个结点进行以下操作:
(a)如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”。
(b)当前最近点一定存在于该结点一个子结点对应的区域。检查该子结点的父结点的另一子结点对应的区域是否有更近的点。具体地,检查另一子结点对应的区域是否与以目标点为球心、以目标点与“当前最近点”间的距离为半径的超球体相交。如果相交,可能在另一个子结点对应的区域内存在距目标点更近的点,移动到另一个子结点。接着,递归地进行最近邻搜索;如果不相交,向上回退。
(4)当回退到根结点时,搜索结束。最后的“当前最近点”即为x的最近邻点。如果实例点是随机分布的,kd树搜索的平均计算复杂度是 O ( l o g N ) O(logN) O(logN),这里 N N N是训练实例数。 k d kd kd树更适用于训练实例数远大于空间维数时的k近邻搜索。当空间维数接近训练实例数时,它的效率会迅速下降,几乎接近线性扫描。

k近邻法三要素:距离度量( L p L_p Lp距离), k k k值的选择(交叉验证选择),分类决策规则(多数表决,等价经验风险最小化)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值