CAU SUBMISSION TO DCASE 2021 TASK6: TRANSFORMER FOLLOWED BY TRANSFER LEARNING FOR AUDIO CAPTIONING

本文探讨了在自动音频字幕(AAC)任务中,利用预训练模型和seq2seq架构,通过CNN14和ResNet54作为encoder,Transformer的decoder进行音频处理。实验结果显示,未进行微调的迁移学习方法实现了SPIDEr score的0.246和0.285。研究强调了在大规模数据集上预训练模型的优势,且不进行fine-tune的效果反而更好,引发关于模型学习能力的疑问。
摘要由CSDN通过智能技术生成

Abstract & Introduction & Related Work

  • 研究任务
    AAC(自动音频字幕)
  • 已有方法和相关工作
  • 面临挑战
  • 创新思路
    使用预训练模型,seq2seq模型使用CNN14和ResNet54作为encoder,transformer的decoder
  • 实验结论
    SPIDEr score of 0.246 and 0.285

PROPOSED MODEL

System Overview

在这里插入图片描述

Pre-Processing

输入特征使用了log-mel频谱图特征。音频数据的采样频率为44.1kHz,我们采用了1024大小的汉恩窗口,重叠率为50%。从每个窗口帧中,我们提取了64个对数梅尔波段的能量。对于时间窗口的数量,我们计算了样本数据集中的最大时间窗口数T。对于我们模型上的固定大小的输入特征,我们将时间维度填充为T大小的零

word embedding用word2vec

Data Augmentation

Spec Augment[8]作为一种数据增强方法被应用于更强大的训练。通过Spec Augment,在我们将对数谱图输入到CNN14或ResNet54编码器之前,频率掩码和时间掩码被随机地应用到对数谱图上

Pretrained Audio Neural Networks using AudioSet

预训练的PANNs用来处理输出,后面接encoder
在这里插入图片描述

Proposed Model

我们采用从PANNs学到的预训练网络(CNN14,ResNet54)作为AudioSet,并使用它们作为我们的编码器,把预训练模型的参数冻结

EXPERIMENTS

在这里插入图片描述

CONCLUSION

没有fine-tune的迁移学习表现最好

Remark

使用了在大规模数据集上预训练的迁移模型,并且不fine-tune效果更好??我表示非常疑惑,那是不是说明你这个模型并不能学到什么东西,奇奇怪怪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值