优化设计-内点惩罚函数法-MATLAB编程

本文介绍了内点惩罚函数法的原理及其在MATLAB中的编程实现,包括无约束优化时的梯度法和单纯形法。在实践中发现程序可能会导致解超出可行域,尽管尝试调整惩罚函数和初始惩罚因子,但效果不明显,期待读者提供指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

优化设计-内点惩罚函数法-MATLAB编程

有关于内点惩罚法原理的详细介绍可参考:
《结构优化设计概论》[M]国防工业出版社,1997.谢祚水,或者其他优化设计有关书籍
(谢祚水先生的书很经典,所以放这了)

内点惩罚函数法介绍

内点法是将惩罚函数定义在可行域内,并从可行域内某一初始点出发,在可行域内进行迭代的方法。它的最大特点是在给定一个初始可行的方案之后,通过迭代寻优, 可以得到一系列可行的、逐步改进的及可任意选取的设计方案。这对决策人员具有很大的可选灵活性,他既可以选择约束最优解x*,也可以根据具体情况,选择其中任何一个无约束最优解x*(r(k))。由于内点法的所有迭代点始终是在可行域内部进行的,因而它不能处理具有等式约束条件的优化问题。
在这里插入图片描述
其算法步骤可以总结为:
在这里插入图片描述

MATLAB程序编程

本程序运行有一定的小问题,即运行结果可能超出可行域外,而接近原函数无约束优化时的解,即惩罚函数未起到应有的作用。于是我在惩罚函数选取时选取了三种形式的惩罚函数,可结果依然不理想。一些研究有说出现这种情况可能是初始惩罚因子选取过小的问题,但是调整初始惩罚因子后,程序结果依旧没有太大的改变,现将程序附下,希望能有人指点下!!!

程序在利用无优化约束方法求取极值点这一环节,个人用了两种方法,一种是传统的梯度法求解,但是编写的程序适用于二维变量求解,且在矩阵求逆环节计算速度较慢,于是采用了第二种方法:单纯型法,可对多维变量函数求解,有关于单纯型法的编程,可详见此文:https://blog.csdn.net/Randall_crow_J/article/details/106305624

无约束优化环节采用梯度法

MATLAB程序如下:

%% 内点法惩罚函数选取在line16可调整,计算逆矩阵(line30)计算速度很慢
clear all;clc
syms x1 x2 x; 
f=x1^2+x2^2-x1*x2-10*x1-4*x2+60;%原函数
g1=x1-6;g2=x2-8;g3=x1+x2-11;%约束条件转换函数
e1=0.1;%梯度法最优值收敛精度
e2=0.1;%内点法收敛精度
D=1;%差值
k=1;
A(k)=0;B(k)=0;%A,B分别记录x1,x2点,初始点为[0,0]
r(k)=3;a=0.7;%r为惩罚因子,a为递增系数
%% 循环
while  D>e2 %罚因子迭代收敛条件
    x1=A(k);x2=B(k);
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值