LightOJ - 1356 Prime Independence(质因数分解,二分图最大独立集)

博客介绍了如何解决LightOJ 1356题目的最大独立集问题。通过质因数分解,将正整数分为奇数和偶数个质因数相乘两类,构建二分图并根据关联连边,最后求解二分图的最大独立集。
摘要由CSDN通过智能技术生成

链接:LightOJ - 1356 Prime Independence

题意:

定义:若 a a a b b b的质数倍,即 a = k × b a=k\times b a=k×b(其中 k k k为质数),则称 a a a b b b相关联;

给出 N   ( 1 ≤ N ≤ 40000 ) N\,(1\le N\le 40000) N(1N40000)个正整数 x ∈ [ 1 , 500000 ] x\in [1,500000] x[1,500000],求最大独立集的元素个数?(独立集中任意两个元素均无关联)



分析:

最大独立集问题可以想办法转化为二分图求解,将正整数 按照其质因数分解形式,可以分为 奇数个质数相乘偶数个质数相乘,显然 所有奇数个质数相乘的正整数两两之间,必定无关联,偶数个的同理。

于是,就可以将 1 1 1 ~ 500000 500000 500000的正整数根据其质因数分解的个数奇偶染色,划分为二分图,再根据关联两两连边,最后求解最大独立集。



代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const int maxn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值