欧几里得定理 及 拓展欧几里得 小结

本文介绍了欧几里得定理和拓展欧几里得算法,包括定理定义、应用和模板。欧几里得定理用于求解最大公约数,而拓展欧几里得算法则解决了贝祖等式,并能应用于求解线性同余方程和求单个逆元。
摘要由CSDN通过智能技术生成

【欧几里得定理】

定义:
  • gcd ⁡ ( a , b ) = gcd ⁡ ( b , a m o d    b ) \gcd(a,b)=\gcd(b,a\mod b) gcd(a,b)=gcd(b,amodb)

应用:

故得到 求解gcd的辗转相除法

模板:
int gcd(int a,int b)
{
   
	return b?gcd(b,a%b):a;
}

int lcm(int a,int b)
{
   
    return a/gcd(a,b)*b;      //这样写防止溢出
}


【拓展欧几里得】

定义:
  • 已知 a , b a, b a,b求解一组 x , y x,y x,y,使它们满足贝祖等式: a x + b y = gcd ⁡ ( a , b ) = d ax+by =\gcd(a, b) =d ax+by=gcd(a,b)=d(解一定存在)

推导:

已知: a x 1 + b y 1 = gcd ⁡ ( a , b ) = d ax_1+by_1=\gcd(a,b)=d ax1+by1=gcd(a,b)=d —— ①
    b x 2 + ( a m o d    b ) y 2 = gcd ⁡ ( b , a m o d    b ) = d bx_2+(a\mod b)y_2=\gcd(b,a\mod b)=d bx2+(amodb)y2=gcd(b,amodb)=d —— ②

由欧几里得定理 gcd ⁡ ( a , b ) = gcd ⁡ ( b , a m o d    b ) \gcd(a,b)=\gcd(b,a\mod b) gcd(a,b)=gcd(b,amodb)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值