读书笔记丨《数据产品经理修炼手册:从零基础到大数据产品实践》丨DAY1

学习内容及时间2022.06.01:

第一章[初识数据产品经理](p1-p24)


1.1为什么要有数据产品经理

1.1.1大数据行业现状:

{什么是大数据?}:

1.目前没有一个统一准确的定义,因为不同主体(公司、用户、产品)的角度不同,理解也不同。

2.唯一可以确定的是:我们所指的大数据,与过去传统的数据截然不同,其产生方式、存储载体、访问方式、表现形式、来源特点等,都有很大差别。

3.随着时代发展,大数据展现了“4V特性“

Volume(体量巨大);Velocity(处理速度快);Variety(类型多种多样);Value(价值大)

1.1.2数据产品经理的前世今生

{引言}数据产品是如何产生的呢?我们为什么需要数据产品呢?它的价值在哪里?我觉得管理大师Peter Drucker 说过的一句话非常好,他说“If you can’t measure it,you can’t improve it” 。意思就是,如果你无法衡量,你就无法增长。
{时代背景}
1.在当今移动互联网领域, 增长黑客 这个词特别流行,它的核心理念就是用数据驱动增长。特别是在中国,人口红利逐渐消失殆尽,流量成本越来越高,如何让企业获取快速的用户增长,用数据驱动产品、精细化运营,就潜藏在数据产品中。
2.在当今的大数据时代,像Google、Facebook、阿里巴巴、腾讯等各大公司它们领先于其他公司的原因是它们做的任何决策不仅依赖于经验,而且更多的是将重点放到数据上,而是用数据驱动它们的业务增长,发现竞争对手不曾发现的市场,找出更多驱动业务发展的方法,从而获得更大的战略优势。有项调查显示,排名在后60%的企业,其大部分业务决策(约70%)是基于直觉或经验的,而基于数据做的决策很少。

{什么是数据产品?}

1.笔者认为:数据产品,是可以发挥数据价值去辅助用户做更优决策的一种产品形式。它在用户决策和行动过程中,提供更多的分析展现和数据洞察,让数据更直观、高效地驱动业务。是一种消费数据,自动化形成的稳定产品形态。

2.数据产品,把数据、数据模型以及分析决策逻辑,尽可能多的形成一个产品形态,以更直观智能的方式,发挥数据的价值,辅助用户更快地作出更合理的决策。

3.真正的数据产品是建立在大数据场景下通过数据挖掘并且体现数据价值后的产品化,最后再融合进业务产品流程中做辅助业务和驱动业务发展。

4.一个好的数据产品需要将用户的核心需求作为该产品的核心,并且充分发挥大数据的价值。

{数据产品的分类}

从受众用户群体来看,数据产品可以分为三类:
(1)企业内部使用的数据产品。如自建 BI 数据分析平台和推荐系统等,这里之所以提到推荐系统,是因为它与用户画像、搜索排序类似的算法一样,本质上是根据用户数据和相应的数据模型建立的一套评分标签体制,也属于数据产品的范畴。
(2)企业针对公司推出的商业型数据产品。如 Google Analytics、 GrowingIO、神策数据和 BDP 商业数据平台等,它们主要以平台行为为其他公司提供商业化服务。
(3)每个用户均可使用的数据产品。如猫眼的实时票房和淘宝指数等,这类产品主要面向普通用户,而且大部分提供免费服务。

{数据产品经理大致有什么要求}

总的来说:
【其实,只要具备业务能力、产品能力和数据能力,能满足数据产品经理基本的要求,有成长潜力,什么专业的人都是可以考虑的。】
【对于业务能力来说,因为每个公司的业务都不一样,所以能够掌握一些业务常用的思路和处理能力、能够在业务中发现痛点,并通过数据产品解决或者辅助解决问题的数据产品经理就是合格的。】
【如果数据产品经理有一定的产品运营经验会更好,就可以收集用户需求不断迭代产品,同时,也要具有一定的沟通、协调资源和进度把控能力。
第一,每一个数据产品经理都需要具有提炼数据需求、找出问题本质、推动解决问题的专业能力。重点在于协调、理解各方。
很多时候,使用该产品的用户是内部用户。
# 一方面,因为其客观原因,他们对数据存储、指标定义以及数据处理的了解和认识有所不同,所以会有不同方面的需求;
# 另一方面,这些需求,有很多都是很零散的,难以把握和总结归纳,故需要按照统一流程处理。
第二,数据产品经理需要平衡矛盾、审视优先级。
对于一些企业的内部数据产品的用户来说,他们既是用户,同时又扮演着同事、老板、朋友等角色,他们本身就拥有一定的能力对产品经理的决策权进行一定的干预,而且经常说自己的需求很重要。那么就会出现矛盾和不同“优先级”的需求。

 

1.2 数据产品经理的日常工作

【以下部分原著以对话形式开展,暂不进行归纳,重在体会故事内容】
1.2.1 一切从业务出发
1.2.2 离不开的产品原型与需求文档
1.2.3 与研发工程师做朋友
1.2.4 多和用户聊聊

1.3 数据产品经理的思维方式

{引言}产品经理们做了一个又一个项目,迭代了一个又一个产品,积累了很多经验,在复盘和总结项目的时候,通常会发现有些方法是通用的,对于数据产品经理的日常工作,技能是我们的安家立命之本,但是在技能之上,更重要的是思维方式,它决定了我们做事情的方法、思路。

{你要学会的思维方式}

1.3.1 归纳与演绎思维

·归纳就是从个别到一般,演绎则是从一般到个别。如此循环往复,使认识不断深化。
{如何检验,归纳法得来的结论是否正确?}
1.结论倒推。看一看是否能够解释清楚,推导后的信息是否准确。
2.不要在信息不全面的情况下犯以偏概全的错误。(例如黑天鹅事件)
        #2#{如何避免以偏概全?}
        需要对得出的结论,进一步用事实验证,从多个角度证实或证伪。所以,要求掌握全面的材料和事实,才能归纳出结论。否则,对业务发展影响很大,可能误导方向。
3.
4.

 

 

 

 1.3.2 数据思维

三个主体——数据、信息和知识

{三个主体之间的关系}

 数据生产信息,信息支撑知识。

大量的数据,要充分地转化成信息丨信息通过积累沉淀,进一步形成结构化的知识体系(形成知识)。

*如果只是收集数据,却不知道怎么用、应该用在哪里,那么数据就没有任何价值。

*有效的数据驱动可以高效地指导企业各个业务快速发展。

 

1.3.3 用户思维

结合《创造力提升计划》课程内容: 

1.关键意见领袖、KOL、资深用户

2.

1.3.4 产品思维

 

 1.3.5 工程思维

 

1.3.6 其他一些思维方式和方法论

1.PRD——5W2H分析法【Who、WhenWhereWhatWhyHowHow Much(much一般可以换成别的)】

2.目标管理工具——S.M.A.R.T原则S=Specific、M=Measurable、A=AttainableR=RelevantT=Time-bound

        指标必须是具体的(Specific);指标必须是可以衡量的(Measurable);

        指标必须是可以达到的(Attainable);指标必须具有明确的截止期限(Time-bound);

        指标是实实在在的,可以证明和观察的,并和其他指标有一定的相关性(Relevant);

3.与程序员沟通(项目管理)的必备方法——任务拆解法。

指的是: 目标 任务 工作 活动。

 

4.需求评审会收尾利器——Todo事项列表。

一场会议下来,总要讨论出一些结果或者得到一些结论,否则就是无效会议。在会议后,接下来应该做什么呢?这就是所谓的行动项——我们要做什么、谁来主要负责、时间点是什么,都要通过邮件发出来,周知所有参会人员以及相关人等,对于达成共识的事情,大家就要按照这个TodoList完成.

 5.学会"优先级"

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值