深度学习--入门配置环境

本文介绍了如何在Ubuntu和Windows系统上搭建Pytorch深度学习环境,重点是使用Anaconda创建虚拟环境并安装特定版本的Pytorch(1.6.0)。建议对于初学者,Windows系统也可,但深入研究时Linux更为便捷。安装过程中需注意CUDA版本的匹配,并提到了同时安装不同版本Pytorch(0.4.0和1.6.0)的可能性。
摘要由CSDN通过智能技术生成

持续更新中。。。。。。

深度学习Pytorch环境的搭建

学术方面,Pytorch 绝对是第一选择的框架。

推荐系统:Ubuntu 。

windows作为简单学习,也可。随着后面的深入,github也多为Linux系统,Linux直接使用更方便。而且,有些编译命令在windows下无法执行,所以深入的话,Linux系统不可或缺。

安装的Pytorch版本–>1.6.0

这里特别提到了安装的版本,是因为老大牛用的是老版本,例如0.4.0,而新大牛部分使用新版本,如1.6.0。1.0前后的版本有很多是不兼容的,所以我推荐安装两个版本,torch==0.4.0torch==1.6.0。(后面会说到安装方法)。当然如果只安装一个的话,我推荐的是后者torch==1.6.0。现在最新的版本是1.9,个人觉得没必要。

安装 Anaconda + 创建虚拟环境+ 安装Pytorch

Anaconda的安装教程很多,我这里就当默认装好啦!

创建虚拟环境

  1. 打开终端(命令行)

  2. 输入 conda create -n name python=3.6.1
    然后输入y,这样就能自己安装了。
    name可以自己定义,这里就用pytorch。当然如果你有多个环境的话,注意名字的区分。

  3. 打开虚拟环境 输入

conda activate pytorch
  1. 安装pytorch 输入
 conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch

需要注意的是,这里是10.2是自己的cuda版本,查看方法:终端输入 nvidia-smi 结果如下:

在这里插入图片描述
替换成自己的号码即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值