持续更新中。。。。。。
深度学习Pytorch环境的搭建
学术方面,Pytorch 绝对是第一选择的框架。
推荐系统:Ubuntu 。
windows作为简单学习,也可。随着后面的深入,github也多为Linux系统,Linux直接使用更方便。而且,有些编译命令在windows下无法执行,所以深入的话,Linux系统不可或缺。
安装的Pytorch版本–>1.6.0
这里特别提到了安装的版本,是因为老大牛用的是老版本,例如0.4.0,而新大牛部分使用新版本,如1.6.0。1.0前后的版本有很多是不兼容的,所以我推荐安装两个版本,torch==0.4.0
和torch==1.6.0
。(后面会说到安装方法)。当然如果只安装一个的话,我推荐的是后者torch==1.6.0
。现在最新的版本是1.9,个人觉得没必要。
安装 Anaconda + 创建虚拟环境+ 安装Pytorch
Anaconda的安装教程很多,我这里就当默认装好啦!
创建虚拟环境
-
打开终端(命令行)
-
输入
conda create -n name python=3.6.1
然后输入y,这样就能自己安装了。
name可以自己定义,这里就用pytorch。当然如果你有多个环境的话,注意名字的区分。 -
打开虚拟环境 输入
conda activate pytorch
- 安装pytorch 输入
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
需要注意的是,这里是10.2是自己的cuda版本,查看方法:终端输入 nvidia-smi
结果如下:
替换成自己的号码即可。