POJ 1077 - Eight(BFS+康托展开)

上周作业的ProblemA。从这题难度上就可以看出学长出题时的丧病程度了。(希望他看不到)
有名的八数码题啊,要是没有搞懂康托展开,可以先去百度学习一下再看这道题。
传送门:http://poj.org/problem?id=1077
Eight
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 34304 Accepted: 14770 Special Judge
Description

The 15-puzzle has been around for over 100 years; even if you don’t know it by that name, you’ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let’s call the missing tile ‘x’; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 x

where the only legal operation is to exchange ‘x’ with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8

9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12

13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x

       r->           d->           r-> 

The letters in the previous row indicate which neighbor of the ‘x’ tile is swapped with the ‘x’ tile at each step; legal values are ‘r’,’l’,’u’ and ‘d’, for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing ‘x’ tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input

You will receive a description of a configuration of the 8 puzzle. The description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus ‘x’. For example, this puzzle
1 2 3

x 4 6

7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8
Output

You will print to standard output either the word “unsolvable”, if the puzzle has no solution, or a string consisting entirely of the letters ‘r’, ‘l’, ‘u’ and ‘d’ that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line.
Sample Input

2 3 4 1 5 x 7 6 8
Sample Output

ullddrurdllurdruldr
Source

South Central USA 1998

思路就是,把x视为9或是0,然后将3*3的矩阵拉成一条数列,根据康托展开的原理,每个这样的排列都对应着一个特定的整数,那么这个排列有没有出现过就很容易知道了。由于输入的时候就是一行数列,那么也别费心搞那么麻烦先变3*3又变回来了,直接就保存一行数列,然后保存x的位置就可以了。x在3*3中的位置其实就是x%3, x/3;每次记录好它的康拓展开数,一对比,就出来了。

讲讲这道题的坑点,我一开始老是TLE,以为是算法问题,后面实在找不到了,就把自己的getchar()换成了scanf()结果就过了,这输入数据到底有多少空格啊。。。真是服了
AC代码如下:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#include <string>
#define maxn 10
using namespace std;
int f[maxn] =
{
    1,
    1,
    2,
    6,
    24,
    120,
    720,
    5040,
    40320,
    362880
};
//int a[maxn];
//string ans;
int kt(int *t)
{
    int su = 0;
    for(int i = 0; i < 9; i++)
    {
        int tmp = 0;
        for(int j = 8; j > i; j--)
        {
            if(t[j] < t[i])
                tmp++;
        }
        su += tmp * f[8-i];
    }
    return su;
}
int sx, sk;
int rch[800000];
struct Node
{
    int x;  //x的位置
    int t[maxn];    //每次记录的数组
//  int p;  //字符串的指针
    string p;   //答案
    int k;  //康托数
};

int dx[4] = {-1, 1, 0, 0};
int dy[4] = {0, 0, -1, 1};
char di[5] = "udlr";
queue<Node> pa;
int main()
{
    char c[20];
//  memset(get, 0, sizeof(get));
    int tp = 0;
    Node beg;
    for(int i = 0; i < 9; i++)
    {
        scanf("%s", c);
        if(c[0] > '0' && c[0] <= '9')
            beg.t[tp++] = c[0] - '0';
        if(c[0] == 'x')
        {
            sx = tp;
            beg.t[tp++] = 0;
        }
    }
    sk = kt(beg.t);
    beg.x = sx, beg.k = sk;
    pa.push(beg);
    rch[beg.k] = 1;

    while(!pa.empty())
    {
        Node cur = pa.front();
        pa.pop();
        if(cur.k == 46233)
        {
            cout << cur.p << endl;
            return 0;
        }
        int a = cur.x / 3;
        int b = cur.x % 3;
        for(int i = 0; i < 4; i++)
        {
            int ta = a + dx[i];
            int tb = b + dy[i];
            if(ta < 0 || ta > 2 || tb < 0 || tb > 2)    continue;

            Node next = cur;
            next.x = 3 * ta + tb;
            next.t[cur.x] = next.t[next.x];
            next.t[next.x] = 0;
            next.k = kt(next.t);
            if(rch[next.k])    continue;
            if(next.k == 46233)
            {
                next.p = cur.p + di[i];
                cout << next.p << endl;
                return 0;
            }

            next.p = cur.p + di[i];
            rch[next.k] = 1;
            pa.push(next);
        }
    }
    printf("unsolvable\n");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值