【深度学习笔记】机器学习基本概念

本文介绍了机器学习中的基本概念,包括特征、标签、样本和数据集的定义。训练集用于模型训练,测试集则用于评估模型性能。特征向量表示对象的属性,而目标是找到最优函数来近似特征向量与标签之间的映射关系。学习算法Lambda负责寻找这个最优函数,通过计算预测结果的准确率来评估模型表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 特征:待学习对象的属性
  • 标签:对待学习对象的某一指标的预测
  • 样本:标记好特征以及标签的的待学习对象
  • 数据集:一组样本构成的集合
  • 训练集:用来训练模型的样本集合
  • 测试集:用来检验模型好坏的样本集合
  • 特征向量:表示一个待学习对象所有特征构成的 D D D维向量 x = ˙ [ x 1 , x 2 , . . . , x D ] T x\dot=[x_1,x_2,...,x_D]^T x=˙[x1,x2,...,xD]T

假设训练集 D D D N N N个样本组成,其中每个样本都是独立同分布的,即独立地从相同的数据分布中抽取的,记为
D = ˙ D\dot= D=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值