离散数学中谓词逻辑推理规则总结,附各规则英文

  • P规则(Premise Rule):前提引入规则,即引入前提集合中的任意一个前提。

  • CP规则(Conclusion Premise Rule):附加前提引入规则,将结论中的前件作为附加前提加入前提集合。CP规则适用于结论为条件式。

  • I规则(Implication Rule):逻辑蕴含规则,通过逻辑蕴含式得到新的逻辑结果。

  • E规则(Equivaluence Rule):等值替换规则,通过等值演算得到新的逻辑结果。

  • T规则(Transformation Rule):逻辑结果引用规则,将由E规则或I规则得到的逻辑结果引入。

  • US规则(Universal Specify Rule):全称特指规则,两种形式: ①∀xP(x)⇒P(y),②∀xP(x)⇒P(c)

  • ES规则(Exstential Specify Rule):存在特指规则,∃xP(x)⇒P(c)

  • UG规则(Universal Generalize Rule):全称推广规则,P(y)⇒∀xP(x)

  • EG规则(Exstential Generalize Rule):存在推广规则,两种形式:①P(y)⇒∃xP(x) ②P(c)⇒∃xP(x)

### 谓词逻辑的概念意义 #### 定义与基本构成 谓词逻辑是对命题逻辑的一种扩展,在其中引入了量词来描述对象及其属性间的关系。通过增加量词这一特性,使得能够更精确地表达关于个体以及它们之间关系的信息[^1]。 #### 表达能力增强 相比于仅能处理简单陈述句真假性的命题逻辑,谓词逻辑允许讨论更为复杂的情况——即涉及多个实体及其相互作用的情形。例如,“所有人都喜欢苹果”,这句话无法直接用命题逻辑表述;但在谓词逻辑里,可以通过全称量化器∀(读作“对于每一个”)配合特定的谓词P(x),如P(x):=x likes apples,从而准确传达该含义[^3]。 #### 关键组成部分 - **常量符号**:代表具体事物的名字。 - **变量符号**:用于指代任意的对象。 - **函数符号**:用来定义从一组输入到另一组输出之间的映射。 - **谓词符号**:表示某些性质或二元以上的关系。 - **量词**:分为两种主要形式: - ∀ (forall) : 全称量词,意为“对所有的...都成立” - ∃ (exists) : 存在量词,意味着“至少有一个…” #### 实际应用案例 考虑这样一个例子:“存在某个学生既聪明又勤奋。” 使用∃作为存在量词,并设C(x)=x is smart; D(x)=x works hard,则上述语句可被写成`∃x(C(x) ∧ D(x))`的形式。 #### 论证有效性的重要性 数理逻辑关注如何利用有效的推理规则得出合理的结论。这里所说的合理性指的是论证过程中的每一步骤都是按照公认的逻辑法则来进行操作的结果,而非依赖外部因素决定其正确与否。因此,在构建基于谓词逻辑系统的证明过程中,确保使用的每一项推断均遵循已知的有效模式至关重要[^2]。 #### 封闭合式公式的意义 当一个公式内没有任何未绑定(自由)的变量时,这样的结构就被称为封闭合式公式或者说是一个闭式。只有在这种情况下,整个表达才能被视为真正的命题并赋予具体的真值(T/F)[^4]。 ```python def evaluate_closed_formula(formula): """评估给定的闭式公式的真假""" # 假设formula已经过解析并且确实是个闭式... pass ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值