[torchtext]如何利用torchtext读取json文件并生成batch

这篇博客介绍了如何利用torchtext库读取JSON文件,并通过设置Field处理文本数据,构建vocab表,以及使用Iterator生成批次。示例中展示了使用TabularDataset读取文件,检查数据读取正确性,以及配置词汇表和批次生成器的详细步骤。
摘要由CSDN通过智能技术生成

在这里插入图片描述

设置Field

首先加载torchtext

from torchtext import data

设置Field,对输入文本数据的格式进行"预设置"

question = data.Field(sequential=True, fix_length=20, pad_token='0')
label    = data.Field(sequential=False, use_vocab=False)
sequential=True tokenizer fix_length pad_first=True tensor_type lower
是否为sequences 分词器 文本长度 是否从左补全 Tensor type 是否令英文字符为小写

question为例,设置文本长度为20,超过20删除,不足20则使用pad_token补全。sequential的含义为输入文本是否是序列文本,若为True则是序列文本,需要配合tokenize(默认使用splits,也可以用Spacy)进行分词,若为False则输入已经是切分好的文本或不需要进行分词。如果处理的是中文文本,也可以自定义tokenizer对中文进行切分:

import jieba

def chinese_tokenizer(text):
    return [tok for tok in jieba.lcut(text)]
    
question = data.Field(sequential=True, tokenize=chinese_tokenizer, fix_length=20)

使用torchtext.data.Tabulardataset.splits读取文件

同时读取训练集、验证集与测试集,path为路径,trainvalidationtes

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值