栈(stack)
栈的介绍
- 栈是一个先入后出(FILO-First In Last Out)的有序列表。
- 栈(stack)是限制线性表中元素的插入和删除只能在线性表的同一端进行的一种特殊线性表。允许插入和删除的一端,为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)。
- 根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在栈顶,而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除
- 出栈(
pop
)和入栈(push
)的概念
入栈
出栈
栈的应用场景
-
子程序的调用:在跳往子程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。
-
处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数、区域变量等数据存入堆栈中。
-
表达式的转换
- [中缀表达式转后缀表达式]
- 求值(实际解决)。
-
二叉树的遍历。
-
图形的深度优先(depth一first)搜索法。
数组模拟栈
思路分析
- 用数组模拟栈的使用
- 定义一个
top
表示栈顶,初始化为-1 - 入栈操作:当有数据加入栈中时
top++;
stack[top]=data
- 出栈操作,可以先将栈顶元素保存,然后移动top,返回栈顶
入栈
/**
* 入栈操作
*
* @param value
* @return void
*/
public void push(int value) {
if (isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
出栈
/**
* 出栈操作
*
* @return int
*/
public int pop() {
if (isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据!");
}
int value = stack[top];
top--;
return value;
}
遍历栈
/**
* 遍历栈,打印
*
* @return void
*/
public void list() {
if (isEmpty()) {
System.out.println("栈空,没有数据");
return;
}
//需要从栈顶开始遍历数据
for (int i = top; i >= 0; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
数组模拟栈
/**
* 定义一个数组表示的栈
*
* @param
* @return
*/
class ArrayStack {
/**
* 栈的大小
*/
private int maxSize;
/**
* 数组,数组模拟栈,数据存放在数组中
*/
private int[] stack;
/**
* top表示栈顶,初始化为-1
*/
private int top = -1;
public ArrayStack(int maxSize) {
this.maxSize = maxSize;
this.stack = new int[this.maxSize];
}
public boolean isFull() {
return top == maxSize - 1;
}
public boolean isEmpty() {
return top == -1;
}
/**
* 入栈操作
*
* @param value
* @return void
*/
public void push(int value) {
if (isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
/**
* 出栈操作
*
* @return int
*/
public int pop() {
if (isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据!");
}
int value = stack[top];
top--;
return value;
}
/**
* 遍历栈,打印
*
* @return void
*/
public void list() {
if (isEmpty()) {
System.out.println("栈空,没有数据");
return;
}
//需要从栈顶开始遍历数据
for (int i = top; i >= 0; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
}
测试数组模拟栈
/**
* Copyright (C), 2020-2020, 人生无限公司
* FileName: ArrayStackDemo
* Description: 数据模拟栈
*
* @create: 2020/9/6 10:45
* @author Reanon
* @version JDK 1.8.0_251
*/
package stack;
import java.util.Scanner;
public class ArrayStackDemo {
public static void main(String[] args) {
//测试ArrayStack
ArrayStack stack = new ArrayStack(4);
String key = "";
boolean loop = true;
Scanner scanner = new Scanner(System.in);
while (loop) {
System.out.println("show:表示显示栈");
System.out.println("exit:表示退出");
System.out.println("push:表示入栈");
System.out.println("pop:表示出栈");
System.out.println("请输入你的选择:");
key = scanner.next();
switch (key) {
case "show":
stack.list();
break;
case "push":
System.out.println("请输入一个数:");
int value = scanner.nextInt();
stack.push(value);
break;
case "pop":
try {
int result = stack.pop();
System.out.printf("出栈的数据%d\n", result);
} catch (Exception e) {
System.out.println(e.getMessage());
}
break;
case "exit":
scanner.close();
loop = false;
break;
default:
break;
}
}
System.out.println("程序退出");
}
}
/**
* 定义一个数组表示的栈
*
* @param
* @return
*/
class ArrayStack {
/**
* 栈的大小
*/
private int maxSize;
/**
* 数组,数组模拟栈,数据存放在数组中
*/
private int[] stack;
/**
* top表示栈顶,初始化为-1
*/
private int top = -1;
public ArrayStack(int maxSize) {
this.maxSize = maxSize;
this.stack = new int[this.maxSize];
}
public boolean isFull() {
return top == maxSize - 1;
}
public boolean isEmpty() {
return top == -1;
}
/**
* 入栈操作
*
* @param value
* @return void
*/
public void push(int value) {
if (isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
/**
* 出栈操作
*
* @return int
*/
public int pop() {
if (isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据!");
}
int value = stack[top];
top--;
return value;
}
/**
* 遍历栈,打印
*
* @return void
*/
public void list() {
if (isEmpty()) {
System.out.println("栈空,没有数据");
return;
}
//需要从栈顶开始遍历数据
for (int i = top; i >= 0; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
}