深度学习
Reanon
这个作者很懒,什么都没留下…
展开
-
Course 1 神经网络和深度学习 Week4 搭建两层神经网络识别猫图
基本元素符号约定上标 [l][l][l]代表神经网络的层数 lthl^{th}lth ,比如a[L]a^{[L]}a[L] 是 [L][L][L]层的激活, W[L]W^{[L]}W[L]是[L][L][L]层的权重,b[L]b^{[L]}b[L]是[L][L][L]层的偏置。上标(i)(i)(i) 表示第ithi^{th}ith个样本,比如 x(i)x^{(i)}x(i)是第ithi^{t...原创 2019-08-13 23:10:25 · 417 阅读 · 0 评论 -
Course 1 神经网络和深度学习 Week4 搭建多层神经网络识别猫图
基本元素符号约定上标 [l][l][l]代表神经网络的层数 lthl^{th}lth ,比如a[L]a^{[L]}a[L] 是 [L][L][L]层的激活, W[L]W^{[L]}W[L]是[L][L][L]层的权重,b[L]b^{[L]}b[L]是[L][L][L]层的偏置。上标(i)(i)(i) 表示第ithi^{th}ith个样本,比如 x(i)x^{(i)}x(i)是第ithi^{t...原创 2019-08-20 19:13:39 · 318 阅读 · 0 评论 -
【目录】深度学习【吴恩达课后作业目录】(转载)
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。 ...转载 2019-08-21 21:22:19 · 1458 阅读 · 0 评论 -
Course 2 改善深层神经网络 Week 1 一维函数和多层神经网络的梯度检查
抑梯度异常初始化2上一层的维度\sqrt{\frac{2}{\text{上一层的维度}}}上一层的维度2L2正则化避免过度拟合的标准方法称为L2正则化,它包括适当修改你的成本函数,我们从原来的成本函数(1)到现在的函数(2):(1)J=−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))J = -\frac{1}{m} \sum\lim...原创 2019-08-21 23:52:40 · 257 阅读 · 0 评论 -
Course 2 改善深层神经网络 Week 1 零初始化、随机初始化和抑梯度异常初始化(He initialization)
抑梯度异常初始化2上一层的维度\sqrt{\frac{2}{\text{上一层的维度}}}上一层的维度2L2正则化避免过度拟合的标准方法称为L2正则化,它包括适当修改你的成本函数,我们从原来的成本函数(1)到现在的函数(2):(1)J=−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))J = -\frac{1}{m} \sum\lim...原创 2019-08-22 10:23:47 · 842 阅读 · 0 评论 -
Course 2 改善深层神经网络 Week 1 L2正则化和Dropout正则化(随机失活正则化)
L2正则化避免过度拟合的标准方法称为L2正则化,它包括适当修改你的成本函数,我们从原来的成本函数(1)到现在的函数(2):(1)J=−1m∑i=1m(y(i)log(a[L](i))+(1−y(i))log(1−a[L](i)))J = -\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L]...原创 2019-08-22 12:11:13 · 416 阅读 · 0 评论 -
Course 2 改善深层神经网络 Week 2 mini-batch梯度下降法、momentum梯度下降和Adam优化算法
优化算法到目前为止,我们始终都是在使用梯度下降法学习,本文中,我们将使用一些更加高级的优化算法,利用这些优化算法,通常可以提高我们算法的收敛速度,并在最终得到更好的分离结果。这些方法可以加快学习速度,甚至可以为成本函数提供更好的最终值,在相同的结果下,有一个好的优化算法可以是等待几天和几个小时之间的差异。 我们想象一下成本函数JJJ,最小化损失函数就像找到丘陵的最低点,在训练的每一步中,都...原创 2019-09-13 15:07:03 · 670 阅读 · 0 评论