Description
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
给你一个长度为n的序列s。
回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a
位置也从0开始标号。
我会使用一些方式强制你在线。
Input Format
第一行序列长度n。
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
Output Format
Q行依次给出询问的答案。
Sample Input
5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
Sample Output
271451044
271451044
969056313
Hint
0:n,Q<=100
1,…,5:n<=2000
0,…,19:n<=20000,Q<=25000
提交地址:bzoj2653
思路:
一道比较66666的主席树的题。
这道题是要用数字的大小顺序来做主席树的,为什么要这样做呢?这就得提到这道题的核心做法:二分答案。
我们二分一个值,看看这个值是不是符合的中位数。
首先,比这个值大的或等于这个数的记为1,小于的记为-1。则一个数要合法,就是要整个数列的和加起来大于等于0。
这些1,-1的数列就是我们的主席树,用大小顺序来做主席树的话,后一棵和前一棵的差别就在于原来等于前一个数的那一位1会变成-1,于是用这样来建树。
关于a,b,c,d四个端点,[b+1,c-1]这段的值是必须的,[a,b],[c,d]这两段我们则取最大的连续值,这不就很像线段树的某个用法?
这道题很好的结合了线段树和主席树。
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define N 90000
typedef long long LL;
int n;
struct p{
LL v;
int pos;
}poi[N];
int root[N],ls[N*60],rs[N*60],c[N*60],tot,lmax[N],rmax[N];
LL pp[6];
inline bool cmp(const p a,const p b){return a.v<b.v;}
void clac(int x){
lmax[x]=std::max(lmax[ls[x]],c[ls[x]]+lmax[rs[x]]);
rmax[x]=std::max(rmax[rs[x]],c[rs[x]]+rmax[ls[x]]);
c[x]=c[ls[x]]+c[rs[x]];
}
void update(int rt,int &rt1,int l,int r,int pos,int va){
if (!rt1)rt1=++tot;
if (l==r){
rmax[rt1]=lmax[rt1]=c[rt1]=va;
return ;
}
int mid=(l+r)/2;
if (pos<=mid)rs[rt1]=rs[rt],update(ls[rt],ls[rt1],l,mid,pos,va);
else ls[rt1]=ls[rt],update(rs[rt],rs[rt1],mid+1,r,pos,va);
clac(rt1);
}
int askall(int rt,int L,int R,int l,int r){
if (L>R)return 0;
if (l<=L&&R<=r)return c[rt];
int mid=(L+R)/2;
int m=0;
if (l<=mid)m+=askall(ls[rt],L,mid,l,r);
if (mid<r)m+=askall(rs[rt],mid+1,R,l,r);
return m;
}
int askl(int rt,int L,int R,int l,int r){
if (R<l||r<L||L>R||l>r)return 0;
if (l<=L&&R<=r)return rmax[rt];
int mid=(L+R)/2;
if (mid<l)return askl(rs[rt],mid+1,R,l,r);
if (r<=mid)return askl(ls[rt],L,mid,l,r);
else return std::max(askl(rs[rt],mid+1,R,mid+1,r),
askl(ls[rt],L,mid,l,mid)+askall(rt,L,R,mid+1,r));
}
int askr(int rt,int L,int R,int l,int r){
if (R<l||r<L||L>R||l>r)return 0;
if (l<=L&&R<=r)return lmax[rt];
int mid=(L+R)/2;
if (mid<l)return askr(rs[rt],mid+1,R,l,r);
if (r<=mid)return askr(ls[rt],L,mid,l,r);
else return std::max(askr(ls[rt],L,mid,l,mid),
askr(rs[rt],mid+1,R,mid+1,r)+askall(rt,L,R,l,mid));
}
bool check(int x){
int ml=askl(root[x],1,n,pp[1],pp[2])+askall(root[x],1,n,pp[2]+1,pp[3]-1)+askr(root[x],1,n,pp[3],pp[4]);
if (ml>=0)return 1;else return 0;
}
void build(int &rt,int l,int r){
if (!rt) rt=++tot;
if (l==r){
lmax[rt]=rmax[rt]=c[rt]=1;
return ;
}
int mid=(l+r)/2;
if (l<=mid)build(ls[rt],l,mid);
if (mid<r)build(rs[rt],mid+1,r);
clac(rt);
return ;
}
int main(){
freopen("c1473.in","r",stdin);
freopen("c1473.out","w",stdout);
scanf("%d",&n);
for (int i=1;i<=n;i++)scanf("%lld",&poi[i].v),poi[i].pos=i;
std::sort(poi+1,poi+n+1,cmp);
int Q;
scanf("%d",&Q);
build(root[1],1,n);
for (int i=2;i<=n;i++)update(root[i-1],root[i],1,n,poi[i-1].pos,-1);
LL bef=0;
while (Q--){
for (int i=1;i<=4;i++)scanf("%lld",&pp[i]),pp[i]=(pp[i]+bef)%n+1;
std::sort(pp+1,pp+5);
int ans=0;
int l=1;int r=n;
while (l<=r){
int mid=(l+r)/2;
if (check(mid)){
l=mid+1;
ans=mid;
}else r=mid-1;
}
printf("%lld\n",poi[ans].v);
bef=poi[ans].v;
}
return 0;
}