BZOJ2653 middle

Description
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
  给你一个长度为n的序列s。
  回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
  其中a
  位置也从0开始标号。
  我会使用一些方式强制你在线。
Input Format
第一行序列长度n。
  接下来n行按顺序给出a中的数。
  接下来一行Q。
  然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
  令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
  将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
  输入保证满足条件。
Output Format
Q行依次给出询问的答案。
Sample Input
5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
Sample Output
271451044
271451044
969056313
Hint
0:n,Q<=100
1,…,5:n<=2000
0,…,19:n<=20000,Q<=25000


提交地址:bzoj2653

思路:
一道比较66666的主席树的题。
这道题是要用数字的大小顺序来做主席树的,为什么要这样做呢?这就得提到这道题的核心做法:二分答案。
我们二分一个值,看看这个值是不是符合的中位数。
首先,比这个值大的或等于这个数的记为1,小于的记为-1。则一个数要合法,就是要整个数列的和加起来大于等于0。
这些1,-1的数列就是我们的主席树,用大小顺序来做主席树的话,后一棵和前一棵的差别就在于原来等于前一个数的那一位1会变成-1,于是用这样来建树。
关于a,b,c,d四个端点,[b+1,c-1]这段的值是必须的,[a,b],[c,d]这两段我们则取最大的连续值,这不就很像线段树的某个用法?
这道题很好的结合了线段树和主席树。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
#define N 90000
typedef long long LL;
int n;
struct p{
    LL v;
    int pos;
}poi[N];
int root[N],ls[N*60],rs[N*60],c[N*60],tot,lmax[N],rmax[N];
LL pp[6];
inline bool cmp(const p a,const p b){return a.v<b.v;}
void clac(int x){
    lmax[x]=std::max(lmax[ls[x]],c[ls[x]]+lmax[rs[x]]);
    rmax[x]=std::max(rmax[rs[x]],c[rs[x]]+rmax[ls[x]]);
    c[x]=c[ls[x]]+c[rs[x]];
}
void update(int rt,int &rt1,int l,int r,int pos,int va){
    if (!rt1)rt1=++tot;
    if (l==r){
        rmax[rt1]=lmax[rt1]=c[rt1]=va;
        return ;
    }
    int mid=(l+r)/2;
    if (pos<=mid)rs[rt1]=rs[rt],update(ls[rt],ls[rt1],l,mid,pos,va);
    else ls[rt1]=ls[rt],update(rs[rt],rs[rt1],mid+1,r,pos,va);
    clac(rt1);
}
int askall(int rt,int L,int R,int l,int r){
    if (L>R)return 0;
    if (l<=L&&R<=r)return c[rt];
    int mid=(L+R)/2;
    int m=0;
    if (l<=mid)m+=askall(ls[rt],L,mid,l,r);
    if (mid<r)m+=askall(rs[rt],mid+1,R,l,r); 
    return m;
}
int askl(int rt,int L,int R,int l,int r){
    if (R<l||r<L||L>R||l>r)return 0;
    if (l<=L&&R<=r)return rmax[rt];
    int mid=(L+R)/2;
    if (mid<l)return askl(rs[rt],mid+1,R,l,r);
    if (r<=mid)return askl(ls[rt],L,mid,l,r);
    else return std::max(askl(rs[rt],mid+1,R,mid+1,r),
    askl(ls[rt],L,mid,l,mid)+askall(rt,L,R,mid+1,r));
}
int askr(int rt,int L,int R,int l,int r){
    if (R<l||r<L||L>R||l>r)return 0;
    if (l<=L&&R<=r)return lmax[rt];
    int mid=(L+R)/2;
    if (mid<l)return askr(rs[rt],mid+1,R,l,r);
    if (r<=mid)return askr(ls[rt],L,mid,l,r);
    else return std::max(askr(ls[rt],L,mid,l,mid),
    askr(rs[rt],mid+1,R,mid+1,r)+askall(rt,L,R,l,mid));
}
bool check(int x){
    int ml=askl(root[x],1,n,pp[1],pp[2])+askall(root[x],1,n,pp[2]+1,pp[3]-1)+askr(root[x],1,n,pp[3],pp[4]);
    if (ml>=0)return 1;else return 0;
}
void build(int &rt,int l,int r){
    if (!rt) rt=++tot;
    if (l==r){
        lmax[rt]=rmax[rt]=c[rt]=1;
        return ;
    }
    int mid=(l+r)/2;
    if (l<=mid)build(ls[rt],l,mid);
    if (mid<r)build(rs[rt],mid+1,r);
    clac(rt);
    return ;
}
int main(){
    freopen("c1473.in","r",stdin);
    freopen("c1473.out","w",stdout);
    scanf("%d",&n);
    for (int i=1;i<=n;i++)scanf("%lld",&poi[i].v),poi[i].pos=i;
    std::sort(poi+1,poi+n+1,cmp);
    int Q;
    scanf("%d",&Q);
    build(root[1],1,n);
    for (int i=2;i<=n;i++)update(root[i-1],root[i],1,n,poi[i-1].pos,-1);
    LL bef=0;
    while (Q--){
        for (int i=1;i<=4;i++)scanf("%lld",&pp[i]),pp[i]=(pp[i]+bef)%n+1;
        std::sort(pp+1,pp+5);
        int ans=0;
        int l=1;int r=n;
        while (l<=r){
            int mid=(l+r)/2;
            if (check(mid)){
                l=mid+1;
                ans=mid;
            }else r=mid-1;
        }
        printf("%lld\n",poi[ans].v);
        bef=poi[ans].v;
    }
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值