【bzoj2653】【middle】【主席树+二分答案】

Description

  一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
  给你一个长度为n的序列s。
  回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
  其中a<b<c<d。
  位置也从0开始标号。
  我会使用一些方式强制你在线。

Input

  第一行序列长度n。
  接下来n行按顺序给出a中的数。
  接下来一行Q。
  然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
  令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
  将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
  输入保证满足条件。

Output

  Q行依次给出询问的答案。

Sample Input

5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0

271451044
271451044
969056313

Sample Output

HINT

  0:n,Q<=100

  1,...,5:n<=2000

  0,...,19:n<=20000,Q<=25000

题解:
         假设答案是x.
         我们把>=x的数记为1,把<x的数记为-1.
         可以发现如果在选定范围内的序列和大于0则证明答案应该更大,相反答案应该更小。
         序列和显然是单调的,所以满足二分性质。
         考虑二分答案。
         现在问题变成了每次询问给定区域内的最大子段和。
         首先(b,c)这一段肯定必须选。那我们就再取[a,b]的最大右子段和与[c,d]的最大左子端和即可。
         我们需要维护当选第x小的数的时候给定序列的区间和,最大右子段和与最大左子段和。
         我们用数组套位置权值线段树即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 20010
int sz,q,root[N],ls[N*20],rs[N*20],sum[N*20],lm[N*20],rm[N*20],n,m,b[5],lastans(0);
struct use{int p,v;}a[N];
using namespace std;
bool cmp(use a,use b){return a.v<b.v;}
void update(int k){
  sum[k]=sum[ls[k]]+sum[rs[k]];
  lm[k]=max(lm[ls[k]],sum[ls[k]]+lm[rs[k]]);
  rm[k]=max(rm[rs[k]],sum[rs[k]]+rm[ls[k]]);
}
void build(int &rt,int l,int r){
  rt=++sz;int mid=l+r>>1;
  if (l==r){
   sum[rt]=lm[rt]=rm[rt]=1;
   return;
  }
  build(ls[rt],l,mid);
  build(rs[rt],mid+1,r);
  update(rt);
}
void insert(int x,int l,int r,int &y,int p,int v){
  y=++sz;
  ls[y]=ls[x];rs[y]=rs[x];
  if (l==r){
    sum[y]=lm[y]=rm[y]=v;
    return;
  }
  int mid=(l+r)>>1;
  if (p<=mid) insert(ls[x],l,mid,ls[y],p,v);
  else insert(rs[x],mid+1,r,rs[y],p,v);
  update(y);
}
int que1(int k,int l,int r,int ll,int rr){
  if (ll==l&&r==rr) return sum[k];
  int mid=(l+r)>>1;
  if (rr<=mid) return que1(ls[k],l,mid,ll,rr);
  else if (ll>mid) return que1(rs[k],mid+1,r,ll,rr);	
  else return que1(ls[k],l,mid,ll,mid)+que1(rs[k],mid+1,r,mid+1,rr);
}
int que2(int k,int l,int r,int ll,int rr){
  if (ll==l&&r==rr) return rm[k];
  int mid=(l+r)>>1;
  if (rr<=mid) return que2(ls[k],l,mid,ll,rr);
  else if (ll>mid) return que2(rs[k],mid+1,r,ll,rr);
  else return max(que2(rs[k],mid+1,r,mid+1,rr),que1(rs[k],mid+1,r,mid+1,rr)+que2(ls[k],l,mid,ll,mid)); 
}
int que3(int k,int l,int r,int ll,int rr){
  if (ll==l&&r==rr) return lm[k];
  int mid=(l+r)>>1;
  if (rr<=mid) return que3(ls[k],l,mid,ll,rr);
  else if (ll>mid) return que3(rs[k],mid+1,r,ll,rr);
  else return max(que3(ls[k],l,mid,ll,mid),que1(ls[k],l,mid,ll,mid)+que3(rs[k],mid+1,r,mid+1,rr));
}
bool judge(int k,int a,int b,int c,int d){
   int temp(0);
   if (c-1>b) temp+=que1(root[k],0,n-1,b+1,c-1);
   temp+=que2(root[k],0,n-1,a,b);
   temp+=que3(root[k],0,n-1,c,d);
   return temp>=0;
}
int main(){
  scanf("%d",&n);
  for (int i=0;i<n;i++){
 	scanf("%d",&a[i].v);
 	a[i].p=i;
  }
  sort(a,a+n,cmp);
  build(root[0],0,n-1);
  for (int i=1;i<n;i++)insert(root[i-1],0,n-1,root[i],a[i-1].p,-1);
  scanf("%d",&q);
  for (int i=1;i<=q;i++){
    scanf("%d%d%d%d",&b[0],&b[1],&b[2],&b[3]);
    for (int j=0;j<4;j++) b[j]=(b[j]+lastans)%n;
    sort(b,b+4);
    int l=0,r=n-1,x;
    while (l<=r){
      int mid=(l+r)>>1;
      if (judge(mid,b[0],b[1],b[2],b[3])) x=mid,l=mid+1;
      else r=mid-1;
    }
    lastans=a[x].v;
    printf("%d\n",lastans);
  }
} 



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值