1407: 最短距离

Description

两个点 A , B 均在做匀速直线运动。给出 t = 0时刻 A , B 的坐标,以及 A , B 的速度,计算 t 0时两个点的距离的最小值。

Input

输入的第一行包含一个整数 T (1 T 200 ),表示一共有 T 组测试数据。
对于每组测试数据,第一行包含4个整数 x A , y A , v Ax , v Ay (-10 3 x A , y A , v Ax , v Ay 10 3 ),表示 t = 0时刻 A 的坐标为( x A , y A ), A 的速度在 x 轴方向上的分量为 v Ax ,在 y 轴上的分量为 v Ay 。第二行包含四个整数 x B , y B , v Bx , v By (-10 3 x B , y B , v Bx , v By 10 3 ),以相同的方式给出了 B 的各项属性。

Output

对于每组测试数据,输出 t 0时两个点距离的最小值,保留8位小数。

Sample Input

6
0 0 0 0
0 1 0 1
0 0 -1 1
0 0 1 -1
0 1 1 0
2 0 0 1
0 1 1 0
2 0 1 0
0 0 -1 1
1 1 1 -1
997 997 -1000 -1000
-1000 -1000 1000 1000

Sample Output

1.00000000
0.00000000
0.70710678
2.23606798
1.41421356
0.00000000

HINT

Source

中南大学第八届大学生程序设计竞赛


题意:求两点的最短距离;可以根据时间 t 将距离方程列出,求出二元一次方程的 a,b,c;

1.如果a=0;即A,B两点的速度都是相等的;那么就把最开始时刻的距离输出;

2.如果a!=0;求出抛物线的顶点的值,(-b/2a , -b/4a+c);然后与初始时刻的点的距离比较,输出较小的;


# include <iostream> 
# include <cstdio> 
# include <cmath> 
using namespace std; 
  
#define maxn 0xfffffff 
  
int main() 
{ 
    //freopen("a.txt","r",stdin); 
    int t; 
    scanf("%d",&t); 
    while(t--) 
    { 
        int ax,ay,bx,by,vax,vay,vbx,vby; 
        double a,b,c,s,ans; 
        ans=maxn; 
        scanf("%d%d%d%d",&ax,&ay,&vax,&vay); 
        scanf("%d%d%d%d",&bx,&by,&vbx,&vby); 
        a=(vax-vbx)*(vax-vbx)+(vay-vby)*(vay-vby); 
        b=2*((vax-vbx)*(ax-bx)+(vay-vby)*(ay-by)); 
        c=(ax-bx)*(ax-bx)+(ay-by)*(ay-by); 
        if(a==0)    printf("%.8lf\n",sqrt(c)); 
        else
        { 
            s=-b/a/2; 
            if(s>0)    ans=(4*a*c-b*b)/a/4; 
            ans=sqrt(ans); 
            c=sqrt(c); 
            printf("%.8lf\n",ans>c ? c:ans); 
        } 
    } 
    return 0; 
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值