Ultra Fast Deep Lane Detection with HybridAnchor Driven Ordinal Classification

本文提出了一种新的车道检测方法,通过使用混合锚点(行和列锚点)表示车道坐标,将车道检测视为有序分类问题。这种方法不仅解决了放大误差问题,还提高了检测速度和准确性。

Abstract

我们将车道检测过程视为一个使用全局特征的锚定驱动的有序分类问题。

首先,我们在一系列混合(行和列)锚点上用稀疏坐标表示车道。在锚驱动表示的帮助下,我们将车道检测任务重新表述为一个有序分类问题,以得到车道的坐标。我们的方法可以显著降低锚点驱动表示的计算成本。

INTRODUCTION

一个车道可以用一系列预定义的行锚点上的坐标来表示

其次,我们建议使用一种基于分类的方式来学习具有锚定驱动表示的车道坐标

行锚难以定位水平车道(侧车道),同样也使列锚难以定位垂直车道,根据上述观察结果,我们建议使用混合(行和列)锚点来分别表示不同的车道。具体来说,我们对中间车道使用行锚,对侧车道使用列锚。这样就可以缓解放大的定位误差问题,提高性能。

在这项工作中,我们进一步扩展了原始的分类到顺序分类。在有序分类中,相邻的类具有密切的有序关系,这与原始分类不同。在我们的工作中,类是有序的(例如,第8类的车道坐标总是在空间上在第7类的车道坐标的右边)。有序分类的另一个性质是类的空间是连续的。例如,像第7.5类这样的非整数类是有意义的,它可以被看作是介于第7类和第8类之间的中间类。

提出了两个损失函数来建模类之间的序数关系,包括基分类损失和数学期望损失

contributions

1)我们提出了一种新的、简单的、有效的车道检测公式。与以往的方法相比,我们的方法将车道表示为基于锚定

的坐标,并以基于分类的方式学习坐标。该公式在解决无视觉线索问题时非常快速和有效。

2)在此基础的基础上,提出了一种混合锚系统,进一步扩展了之前的行锚系统,有效地减少了定位误差。此外,基于分类的学习进一步扩展到有序分类问题,利用基于分类定位中的自然顺序关系。

3)所提出的方法达到了最先进的速度和性能。

Compare

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值