【BZOJ 1101】 [POI2007]Zap

1101: [POI2007]Zap

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 1400   Solved: 455
[ Submit][ Status]

Description

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2

HINT

对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。


莫比乌斯函数。

PoPoQQQ课件


贾志鹏线性筛


先把题目转化为求x<=a/d,y<=b/d且gcd(x,y)=1的(x,y)有多少对。


而莫比乌斯函数有一个性质是


这里的n=1与gcd(x,y)=1相似。


(下面引用自 iwtwiioi)



如果直接枚举d来做会TLE,但是我们发现a'/d的值在d等于好多值得时候都是相同的。


比如a'=100,那么d在[34,50]之间a'/d都是2。


那么我们可以把连续的一段d一起来算(分块):


设a'/d=x,那么最后一个a'/d=x的d=a'/x,所以这段连续的区间就是[d,a'/(a'/d)]


结合b'/d,取个min就可以了。


#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define LL long long
using namespace std;
int check[50005],mu[50005],p[50005],sum[50005];
void Getmobius()
{
	memset(check,0,sizeof(check));
	mu[1]=1;
	int tot=0;
	for (int i=2;i<=50000;i++)
	{
		if (!check[i])
		{
			p[++tot]=i;
			mu[i]=-1;
		}
		for (int j=1;j<=tot;j++)
		{
			if (i*p[j]>50000) break;
			check[i*p[j]]=1;
			if (i%p[j]==0)
			{
				mu[i*p[j]]=0;
				break;
			}
			else mu[i*p[j]]=-mu[i];
		}
	}
	sum[0]=0;
	for (int i=1;i<=50000;i++)
		sum[i]=sum[i-1]+mu[i];
}
int main()
{
        Getmobius();
	int T;
	scanf("%d",&T);
	while (T--)
	{
		int a,b,D;
		scanf("%d%d%d",&a,&b,&D);
		int pos;
		a/=D,b/=D;
		int x=min(a,b);
		LL ans=0LL;
		for (int d=1;d<=x;d=pos+1)
		{
			pos=min(a/(a/d),b/(b/d));
			ans+=(LL)(sum[pos]-sum[d-1])*(a/d)*(b/d);
		}
		printf("%lld\n",ans);
	}
	return 0;
}



感悟:

1.RE是因为数组开小。。


2.这道题的关键在于:把如果gcd(x,y)=1对答案贡献为1转化为

以及分块处理加速计算


3.莫比乌斯函数的求法就是线性筛,保证每个数只被算过一次,复杂度O(n)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值