【BZOJ 1774】 [Usaco2009 Dec]Toll 过路费

1774: [Usaco2009 Dec]Toll 过路费

Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 266 Solved: 157
[Submit][Status][Discuss]
Description

跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道。为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费。 农场中由N(1 <= N <= 250)片草地(标号为1到N),并且有M(1 <= M <= 10000)条 双向道路连接草地A_j和B_j(1 <= A_j <= N; 1 <= B_j <= N)。奶牛们从任意一片草 地出发可以抵达任意一片的草地。FJ已经在连接A_j和B_j的双向道路上设置一个过路费L_j (1 <= L_j <= 100,000)。 可能有多条道路连接相同的两片草地,但是不存在一条道路连接一片草地和这片草地本身。最 值得庆幸的是,奶牛从任意一篇草地出发,经过一系列的路径,总是可以抵达其它的任意一片 草地。 除了贪得无厌,叫兽都不知道该说什么好。FJ竟然在每片草地上面也设置了一个过路费C_i (1 <= C_i <= 100000)。从一片草地到另外一片草地的费用,是经过的所有道路的过路 费之和,加上经过的所有的草地(包括起点和终点)的过路费的最大值。 任劳任怨的牛们希望去调查一下她们应该选择那一条路径。她们要你写一个程序,接受K(1 <= K <= 10,000)个问题并且输出每个询问对应的最小花费。第i个问题包含两个数字s_i 和t_i(1 <= s_i <= N; 1 <= t_i <= N; s_i != t_i),表示起点和终点的草地。 考虑下面这个包含5片草地的样例图像: 从草地1到草地3的道路的“边过路费”为3,草地2的“点过路费”为5。 要从草地1走到草地4,可以从草地1走到草地3再走到草地5最后抵达草地4。如果这么走的话, 需要的“边过路费”为2+1+1=4,需要的点过路费为4(草地5的点过路费最大),所以总的花 费为4+4=8。 而从草地2到草地3的最佳路径是从草地2出发,抵达草地5,最后到达草地3。这么走的话,边 过路费为3+1=4,点过路费为5,总花费为4+5=9。
Input

  • 第1行: 三个空格隔开的整数: N, M和K * 第2到第N+1行: 第i+1行包含一个单独的整数: C_i * 第N+2到第N+M+1行: 第j+N+1行包含3个由空格隔开的整数: A_j, B_j和L_j * 第N+M+2倒第N+M+K+1行: 第i+N+M+1行表示第i个问题,包含两个由空格隔开的整数s_i 和t_i
    Output

  • 第1到第K行: 第i行包含一个单独的整数,表示从s_i到t_i的最小花费。
    Sample Input

5 7 2

2

5

3

3

4

1 2 3

1 3 2

2 5 3

5 3 1

5 4 1

2 4 3

3 4 4

1 4

2 3

Sample Output

8

9

HINT

Source

Gold

可以注意到这道题只有 n=250 个节点,同时计算式中包含点权的最大值,于是可以想到用floyd来完成。

floyd中要先枚举中间点 k ,我们可以先按照点权从小到大排序,那么在计算最大点权的时候只要考虑i,j,k三者中点权的最大值即可。

通过排序使得最大值变成当前点的点权的思路非常有借鉴性!!

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
int g[255][255],d[255][255],C[255],n,m,k;
struct data
{
    int v,id;
}c[255];
bool cmp(data a,data b)
{
    return a.v<b.v;
}
void floyd()
{
    for (int x=1;x<=n;x++)
    {
        int k=c[x].id;
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;j++)
            {
                d[i][j]=d[j][i]=min(d[i][k]+d[k][j],d[i][j]);
                g[i][j]=g[j][i]=min(g[i][j],d[i][j]+max(c[x].v,max(C[i],C[j])));
            }
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    for (int i=1;i<=n;i++)
        scanf("%d",&c[i].v),c[i].id=i;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=n;j++)
            if (i!=j) d[i][j]=d[j][i]=g[i][j]=g[j][i]=1e9+10;
            else g[i][j]=g[j][i]=c[i].v;
    sort(c+1,c+1+n,cmp);
    for (int i=1;i<=n;i++)
        C[c[i].id]=c[i].v;
    for (int i=1;i<=m;i++)
    {
        int x,y,l;
        scanf("%d%d%d",&x,&y,&l);
        if (l<d[x][y])
            d[x][y]=d[y][x]=l;
    }
    floyd();
    for (int i=1;i<=k;i++)
    {
        int s,t;
        scanf("%d%d",&s,&t);
        printf("%d\n",g[s][t]);
    }
    return 0;
}

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值