力扣35周双周赛5504使数组和能被 P 整除

使数组和能被 P 整除

题目连接

一、题目描述

给你一个正整数数组 nums,请你移除 最短 子数组(可以为 空),使得剩余元素的 和 能被 p 整除。 不允许 将整个数组都移除。
请你返回你需要移除的最短子数组,如果无法满足题目要求,返回 -1 。
子数组 定义为原数组中连续的一组元素。

示例 1:
输入:nums = [3,1,4,2], p = 6
输出:1
解释:nums 中元素和为 10,不能被 p 整除。我们可以移除子数组 [4] ,剩余元素的和为 6 。

示例 2:
输入:nums = [6,3,5,2], p = 9
输出:2
解释:我们无法移除任何一个元素使得和被 9 整除,最优方案是移除子数组 [5,2] ,剩余元素为 [6,3],和为 9 。

示例 3:
输入:nums = [1,2,3], p = 3
输出:0
解释:和恰好为 6 ,已经能被 3 整除了。所以我们不需要移除任何元素。

示例 4:
输入:nums = [1,2,3], p = 7
输出:-1
解释:没有任何方案使得移除子数组后剩余元素的和被 7 整除。

二、解法

1. 暴力解法

先计算出数组的总和,若和模p为0,则返回0,然后利用三层循环遍历所有的子数组,将数组总和减去子数组的和,模p如果等于0,则找到对应的数组长度,返回当前遍历的数组长度。如果遍历完之后没有发现,则返回 -1;

public int minSubarray(int[] nums, int p) {
    int sum = 0;
    for (int i = 0; i < nums.length; i++) {
        sum += nums[i] % p;
    }
    if (sum % p ==0)
        return 0;
    for (int i = 1; i < nums.length; i++) {
        for (int j = 0; j < nums.length - i + 1; j++) {
            int inSum = 0;
            for (int k = j; k < j + i; k++) {
                inSum += nums[k] % p;
            }
            if ((sum - inSum) % p == 0)
                return i;
        }
    }

    return -1;
}

运行结果

超出时间限制
127 / 142 个通过测试用例

时间复杂度: O ( n 3 ) O(n^3) O(n3)

空间复杂度: O ( 1 ) O(1) O(1)

2. 前缀和加哈希解法

该算法参考了力扣liuyubobobo的解题过程

一般与子数组的和相关的题目都可以利用前缀和来进行求解。

首先我们仍然求出整个数组的和记为 sum,如果数组的和模p,记为mod,为0,那么就可以直接返回0

如果mod不为零,那么我们只需找出和模p后为mod的子数组中最短的那个即可。

我们标记P[i]为数组索引为 i 的前缀和。

在计算索引 i 到 j 的子数组和时,利用前缀和,我们知道

sum(i, j) = P[j] - P[i - 1]

而我们所求的为和模p为mod的子数组,则假设 P[j] 模 p 为 x, P[i-1]模 p 为 y,则需要满足的是 |x - y| 模 p 等于 mod;

因此,当遍历到索引 j 时,我们首先求出前缀为 preSum,模p后值为 preMod,则我们需要找到 i < j,P[i-1] 模 p =targetMod,其中targetMod = preMod - mod,当 preMod 比 mod 小时,可以再加上 p,调整为正数。

因此,我们可以利用哈希表记录每个前缀和,其中key为模p的余数,而value值为索引,随着遍历的进行,后面的索引将覆盖前面的索引,进而保证了我们所求得的数组长度为最小值。

具体代码

public static int minSubarray(int[] nums, int p) {
    long sum = 0;
    for (int i = 0; i < nums.length; i++) {
        sum += nums[i];
    }
    int mod = (int) (sum % p);
    if (mod == 0)
        return 0;
    Map<Integer, Integer> map = new HashMap<>();
    map.put(0,-1);
    long preSum = 0;
    int ans = nums.length;
    for (int i = 0; i < nums.length; i++) {
        preSum += nums[i];
        int preMod = (int) (preSum % p);
        map.put(preMod, i);
        int targetMod = preMod - mod >= 0 ? (preMod - mod) : (preMod - mod + p);
        if (map.containsKey(targetMod))
            ans = Math.min(i - map.get(targetMod), ans);
    }
    return ans == nums.length ? -1 : ans;
}

运行结果

执行用时:35 ms, 在所有 Java 提交中击败了100.00%的用户
内存消耗:54.7 MB, 在所有 Java 提交中击败了100.00%的用户

时间复杂度: O ( n ) O(n) O(n)

空间复杂度: O ( p ) O(p) O(p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值