使数组和能被 P 整除
一、题目描述
给你一个正整数数组 nums,请你移除 最短 子数组(可以为 空),使得剩余元素的 和 能被 p 整除。 不允许 将整个数组都移除。
请你返回你需要移除的最短子数组,如果无法满足题目要求,返回 -1 。
子数组 定义为原数组中连续的一组元素。
示例 1:
输入:nums = [3,1,4,2], p = 6
输出:1
解释:nums 中元素和为 10,不能被 p 整除。我们可以移除子数组 [4] ,剩余元素的和为 6 。
示例 2:
输入:nums = [6,3,5,2], p = 9
输出:2
解释:我们无法移除任何一个元素使得和被 9 整除,最优方案是移除子数组 [5,2] ,剩余元素为 [6,3],和为 9 。
示例 3:
输入:nums = [1,2,3], p = 3
输出:0
解释:和恰好为 6 ,已经能被 3 整除了。所以我们不需要移除任何元素。
示例 4:
输入:nums = [1,2,3], p = 7
输出:-1
解释:没有任何方案使得移除子数组后剩余元素的和被 7 整除。
二、解法
1. 暴力解法
先计算出数组的总和,若和模p为0,则返回0,然后利用三层循环遍历所有的子数组,将数组总和减去子数组的和,模p如果等于0,则找到对应的数组长度,返回当前遍历的数组长度。如果遍历完之后没有发现,则返回 -1;
public int minSubarray(int[] nums, int p) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i] % p;
}
if (sum % p ==0)
return 0;
for (int i = 1; i < nums.length; i++) {
for (int j = 0; j < nums.length - i + 1; j++) {
int inSum = 0;
for (int k = j; k < j + i; k++) {
inSum += nums[k] % p;
}
if ((sum - inSum) % p == 0)
return i;
}
}
return -1;
}
运行结果
超出时间限制
127 / 142 个通过测试用例
时间复杂度: O ( n 3 ) O(n^3) O(n3)
空间复杂度: O ( 1 ) O(1) O(1)
2. 前缀和加哈希解法
该算法参考了力扣liuyubobobo的解题过程
一般与子数组的和相关的题目都可以利用前缀和来进行求解。
首先我们仍然求出整个数组的和记为 sum,如果数组的和模p,记为mod,为0,那么就可以直接返回0
如果mod不为零,那么我们只需找出和模p后为mod的子数组中最短的那个即可。
我们标记P[i]为数组索引为 i 的前缀和。
在计算索引 i 到 j 的子数组和时,利用前缀和,我们知道
sum(i, j) = P[j] - P[i - 1]
而我们所求的为和模p为mod的子数组,则假设 P[j] 模 p 为 x, P[i-1]模 p 为 y,则需要满足的是 |x - y| 模 p 等于 mod;
因此,当遍历到索引 j 时,我们首先求出前缀为 preSum,模p后值为 preMod,则我们需要找到 i < j,P[i-1] 模 p =targetMod,其中targetMod = preMod - mod,当 preMod 比 mod 小时,可以再加上 p,调整为正数。
因此,我们可以利用哈希表记录每个前缀和,其中key为模p的余数,而value值为索引,随着遍历的进行,后面的索引将覆盖前面的索引,进而保证了我们所求得的数组长度为最小值。
具体代码
public static int minSubarray(int[] nums, int p) {
long sum = 0;
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
}
int mod = (int) (sum % p);
if (mod == 0)
return 0;
Map<Integer, Integer> map = new HashMap<>();
map.put(0,-1);
long preSum = 0;
int ans = nums.length;
for (int i = 0; i < nums.length; i++) {
preSum += nums[i];
int preMod = (int) (preSum % p);
map.put(preMod, i);
int targetMod = preMod - mod >= 0 ? (preMod - mod) : (preMod - mod + p);
if (map.containsKey(targetMod))
ans = Math.min(i - map.get(targetMod), ans);
}
return ans == nums.length ? -1 : ans;
}
运行结果
执行用时:35 ms, 在所有 Java 提交中击败了100.00%的用户
内存消耗:54.7 MB, 在所有 Java 提交中击败了100.00%的用户
时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( p ) O(p) O(p)