记录一下今天遇到的每日一题,很绕,还需要考虑很多细节
思路
遍历数组,找出数组除余p之后余下的数字k,需要寻找的子数组也需要满足除余p之后余k。
找出所有满足的子数组,求出最短长度。
具体求子数组,求出前n个数除余p的值,存在一个map里面和下标对应起来。成为除余前缀和
curReminder = (curReminder + nums[i]) % p;
reminder2Index[curReminder] = i;
遍历数组过程中,对下标i,记录reminder2Index[cur] = i
,查找是否有某个除余前缀合res满足
(cur - res + p) mod p = k
如果不好理解,可以这样想
现在假设CUR 和 RES是前缀和而不是除余前缀和,且CUR > RES
即
CUR = cur + n * p
RES = res + m * p;
那么求出两子数组之间的数字的合满足除余p等于k,容易得到等式:
(CUR - RES) mod p = k
即
((cur + n * p)- (res + m * p)) mod p = k
:(cur - res + (n - m) * p) mod p = k
:(cur - res + 0 )mod p = k
为了防止cur - res < 0 导致结果不正确
所以
(cur - res + p) mod p = k
移项可得
(cur - k + p) mod p = res
细节
由于是前缀合,需要考虑前0个数,下标设置为-1
比如 3 1 4 2, 子数组[3,1]就是一个可能回答,这时候需要reminder2Index[0]
代码如下
class Solution {
public:
int minSubarray(vector<int>& nums, int p) {
int n = nums.size();
int reminder = 0,res = 0;
int curReminder = 0,ans = INT_MAX;
//算出我们要找的余数合为reminder
for(auto num : nums) {
reminder = (reminder + num) % p;
}
if(reminder == 0) return 0;
unordered_map<int,int> reminder2Index;
//比如 3 1 4 2, 子数组[3,1]就能满足其中一个解答,这时候需要reminder2Index[0]
reminder2Index[0] = -1;
//余数前缀和来寻找子字符串
for(int i = 0; i < n; i++) {
//前i个数取余p的合
curReminder = (curReminder + nums[i]) % p;
//难点
res = (curReminder - reminder + p) % p;
reminder2Index[curReminder] = i;
if(reminder2Index.count(res)) {
ans = min(ans,i - reminder2Index[res]);
}
}
return ans == n? -1:ans;
}
};
``