以下只是学习过程中个人理解,不对的地方欢迎大佬多多指正
首先看一个线性方程组
这个线性方程组为Ax=b ,A是m*n的矩阵,写成如下形式 a1,a2,……,an是系数矩阵的列向量
n个向量线性无关 ⇔ 这n个向量可以张成一个n维空间 ,他们是这个n维向量的一组基向量
则在这个向量空间里任取一点,必有一个确定的坐标,也就是这个方程组有唯一解。
方程组的解 实际就是描述各向量间数量关系的系数
就像这个图中的AE= x1 AC + x2 AB +x3 AD (这样画图是为了表示在空间中的一组基向量不一定是两两正交的,像直角坐标系那样)
当b为零向量的时候,这个方程组变成了齐次方程组,此时方程组有唯一解,并且一个齐次方程组方程组必有零解,则这个方程组只有零解(也就是想让空间中的基向量互相加减,表示出零向量,只能让他们都乘0 才能得到零向量)
n个向量线性无关 ⇔ r(A)=n 列满秩
⇔|A| ≠ 0(n个n维向量的时候,才有行列式,才可以讨论是否可逆)
⇔ 矩阵可逆
⇔非齐次方程组有唯一解 r(A)=r(A,b)=n
⇔ 齐次方程组只有零解
⇔ 如果n=3 就是这三个向量不共面
n个向量线性相关 ⇔ r(A)<n 不满秩
⇔ |A| = 0
⇔ 矩阵不可逆
⇔非齐次方程组无解(r(A)≠r(A,b)且必有r(A)+1=r(A,B) b没法用 a1...... an 表示,
或者有无穷多解(r(A)=r(A,B)<n b落在了a1 a2......an 多个线性相关的向量所构成
的空间内)