线性无关的含义与其等价命题

以下只是学习过程中个人理解,不对的地方欢迎大佬多多指正

首先看一个线性方程组

这个线性方程组为Ax=b ,A是m*n的矩阵,写成如下形式 a1,a2,……,an是系数矩阵的列向量

n个向量线性无关 ⇔ 这n个向量可以张成一个n维空间 ,他们是这个n维向量的一组基向量

则在这个向量空间里任取一点,必有一个确定的坐标,也就是这个方程组有唯一解。

方程组的解 实际就是描述各向量间数量关系的系数

就像这个图中的AE= x1 AC + x2 AB +x3 AD (这样画图是为了表示在空间中的一组基向量不一定是两两正交的,像直角坐标系那样)

当b为零向量的时候,这个方程组变成了齐次方程组,此时方程组有唯一解,并且一个齐次方程组方程组必有零解,则这个方程组只有零解(也就是想让空间中的基向量互相加减,表示出零向量,只能让他们都乘0 才能得到零向量)

n个向量线性无关  ⇔ r(A)=n 列满秩
               ⇔|A| ≠ 0(n个n维向量的时候,才有行列式,才可以讨论是否可逆) 
               ⇔ 矩阵可逆
               ⇔非齐次方程组有唯一解 r(A)=r(A,b)=n
               ⇔ 齐次方程组只有零解  
               ⇔ 如果n=3 就是这三个向量不共面

n个向量线性相关  ⇔ r(A)<n 不满秩 
               ⇔ |A| = 0 
               ⇔ 矩阵不可逆
               ⇔非齐次方程组无解(r(A)≠r(A,b)且必有r(A)+1=r(A,B) b没法用 a1...... an 表示,             
                   或者有无穷多解(r(A)=r(A,B)<n b落在了a1 a2......an 多个线性相关的向量所构成            
                   的空间内)

                                   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值