【题解】洛谷P1351 联合权值(dfs、LCA)

一道关于洛谷P1351的题目,初始尝试使用最短路径算法导致得分不高。意识到问题在于图实际上是一棵树,可以利用DFS对每个节点进行扩展,但仍然只得到60分。进一步分析发现,题目关注的是两点间距离为2的情况。通过枚举每个节点作为中心,计算其子节点两两之间的联合权值,采用数学技巧简化计算过程,避免繁琐枚举。最终,计算所有节点为中心时的最大联合权值,并输出最大值和总和,同时记录子节点的最大和最小权值以优化算法。

这道题一开始啥也没想就用最短路写,才40分,然后发现自己对寻找最大值取模了,改了之后60分。。然后又发现n个点,n-1条边,其实这个图就是一棵树,每一个点到其余点的最短路有且只有一条,完全可以用dfs对每个点进行扩展,扩展两层找到点然后进行操作。。虽然看起来更简便了,但还是60分,所以我们得想更好的方法。

为啥它让你找距离为2的点而不是距离为3、4……的点呢?我们可以发现,对于一个中心结点,它的所有儿子相互之间的距离都是2。这个性质很重要,我们就可以利用它,枚举每一个点为中心结点,求出它所有儿子两两之间的联合权值,但不免有些繁琐。所以我们可以把它所有儿子的权值和相加,然后平方,最后减去每一个权值的平方,就能得到以该点为中心结点情况下所有儿子之间联合权值之和。出现加法或乘法就取模,注意减法取模可能为负数,在取模后要加上模数再取模。然后还要存下每个中心结点情况下的子节点权值最大值和最小值,相乘得到该情况下最大联合权值,最后将所有点为中心结点的最大联合权值取最大值就是输出的第一个结果,第二个结果就是每一个中心结点情况下联合权值之和。

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define mod 10007	
#define ll long long
using namespace std;
const int maxn=200010;
int head[maxn*2],nnext[maxn*2],to[maxn*2];
ll w[maxn];
int n,tot;
ll sum=0,ans=-1e9;
void add(int x,int y)
{
	tot++;
	nnext[tot]=head[x];
	head[x]=tot;
	to[tot]=y;
}
void dfs(int x)
{
	ll ans1=-1e9,ans2=-1e9;
	ll sum1=0;
	int p1;
	for(int i=head[x];i;i=nnext[i])
	{
		int y=to[i];
		sum1=(sum1+w[y])%mod;
		if(w[y]>ans1)
		{
			ans1=w[y];
			p1=y;
		}
	}
	sum1=sum1*sum1%mod;
	for(int i=head[x];i;i=nnext[i])
	{
		int y=to[i];
		sum1=((sum1-w[y]*w[y]%mod)%mod+mod)%mod;
		if(w[y]>ans2&&y!=p1)
		{
			ans2=w[y];
		}
	}
	sum=(sum+sum1)%mod;
//	cout<<ans1<<' '<<ans2<<' '<<sum%mod<<' '<<endl;
	ans=max(ans,ans1*ans2);
	return ;
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n-1;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		add(x,y);
		add(y,x);
	}
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&w[i]);
	}
	for(int i=1;i<=n;i++)
	{
		dfs(i);
		
	}
	printf("%lld %lld",ans,sum%mod);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值