探讨圆和勾股数的关系:
首先勾股数组等式:. 两边同除以得到:,所以关于有理数对的方程。
方程为中心点为(0, 0)半径为1的圆C。
设直线穿过(-1, 0)点与圆相交于两点。则对于直线方程为:
y=mx+b,由(-1, 0)点得b, L:y=m(x+1) (点斜式)
为了理解下面的计算,我们描述一元二次方程求根公式以及韦达定理:
给定一元二次方程一般式:
为了降次,使用完全平方公式进行配方。
,则.
根据完全平方公式进行配方: ,
.
韦达定理:
由上面直线L和圆C:将直线方程代入得:
因为一个根是(-1, 0),所以根据韦达定理另一个根为:
若这个点为有理数解,则过两点的斜率也必为有理数。即取m的所有可能值就可得到圆C所有有理数解(点(-1,0)除外,否则斜率为无穷),上述结果可概述为下面的定理:
圆上的坐标是有理数的点都可由公式得到,其中m取有理数值。(点(-1,0)除外,这是当时的极限值。)
有理数的定义:给定两个整数p、q,所有能表示为形式的数。(非严谨定义)
中的直线斜率m可以转化为的形式,所以将代入化简得到,由于对应勾股数组中,所以,即给出勾股数组:
当便与本原勾股数组联系起来。其中s和t是任意没有公因数的奇数。