勾股数组与单位圆
考虑 a2+b2=c2 a 2 + b 2 = c 2 ,得到 (ac)2+(bc)2=1 ( a c ) 2 + ( b c ) 2 = 1
考虑几何角度,也就是单位圆,取(-1,0)为定点,斜率为任意有理数m的直线
则直线L的方程为
联立圆的方程,可以解得另一个点的坐标为
这样通过m的所有可能取值,上述过程就生成方程 x2+y2=1 x 2 + y 2 = 1 的所有有理数解。
定理3.1. 圆 x2+y2=1 x 2 + y 2 = 1 上的坐标是有理数的点都可以由公式 (x,y)=(1−m21+m2,2m1+m2) ( x , y ) = ( 1 − m 2 1 + m 2 , 2 m 1 + m 2 ) 得到,其中m取有理数值(点 (−1,0) ( − 1 , 0 ) 除外 )
如果将有理数m写成分数形式,即
vu
v
u
,则上面公式变成
(x,y)=(u2−v2u2+v2,2uvu2+v2)
(
x
,
y
)
=
(
u
2
−
v
2
u
2
+
v
2
,
2
u
v
u
2
+
v
2
)
,消去分母就给出勾股数组
这是描述所有勾股数组的另一种方法
通过令 u=s+t2与v=s−t2 u = s + t 2 与 v = s − t 2 可与第二章的公式相联系。