【BIT矩阵分析】第2章 Jordan & Smith 标准型

文章汇总可见上面的专栏 或者 共享文档链接,可在下面的在线文档 或者 本文里评论指错,谢谢大家的共同努力:BIT矩阵分析速成指南

文章有目录,标题里有⭐❗的重点看看,一定要懂哈!

本专栏内容基本涵盖考点,适用于 北京理工大学 研究生 矩阵分析课程,标⭐❗的看会基本能做计算题,足够及格,证明题主要分布在第3章和第5章。

大题必考:给一个矩阵A,求Jordan标准型JA(基本上都是用特征矩阵秩的方法解)和最小多项式mA(放在第6章的帖子里讲);

填空必考:给一个λ矩阵A(λ),求行列式因子、不变因子、初等因子三种因子互相转换一定要会;A(λ)通常都是对角线上是λ多项式,这种直接用行列式因子法求,如果不是,那就老老实实用初等变换,所以两种办法都要会。

相似变换矩阵P的求法也挺重要,无非就是求特征向量,不会直接考,后面几章会用到。

行列式因子 不变因子 初级因子

⭐三种因子互相转换

Jordan标准型

行列式因子求法(适用于元素分布于对角线上的情况)

求出所有行列式因子

❗行列式因子怎么求?

以二阶行列式D2(λ)为例

注意步骤2

由行列式因子得到初等因子

⭐特征矩阵秩的方法(最常用,大题)

注意rank代表的是Jordan块的维数,N代表的是块数

Smith标准型求法:

⭐初等变换求法

⭐初等变换

❗对角线元素不能整除怎么办

初等变换宗旨:找次数最低项,要么能整除,要么能降次

整体思路:

  1. 不能整除的往上面行加

  2. 降次

  3. 把次数低的往左上角放

  4. 左上角为准,同行同列化0

考场上要是初等变换不出来,就用行列式因子法吧

⭐行列式因子法(适用于元素分布于对角线)

1. 求行列式因子D

行列式因子怎么求?

以二阶行列式D2(λ)为例

注意步骤2

2. 求不变因子d,即为Smith标准型的对角线元素。

用Smith标准型求Jordan矩阵

  1. 求得Smith

  2. 得到不变因子

  3. 得到初等因子

  4. 得到Jordan块

  5. 得到Jordan标准型

❗行列式因子怎么求?

以二阶行列式D2(λ)为例

注意步骤2

⭐求相似变换P-1AP

第一大题矩阵函数会用到(也可以用多项式方法做,更简单,见第六章)

感谢:

Bilibili(必看):翟男不宅的个人空间-翟男不宅个人主页-哔哩哔哩视频

Bilibili(校友总结):学疯蔚然的个人空间-学疯蔚然个人主页-哔哩哔哩视频

Bilibili(校友总结):这是谁啊好难猜的个人空间-这是谁啊好难猜个人主页-哔哩哔哩视频

Github(必看):GitHub - DarkIceField/BIT_Matrix_Analysis

Bilibili:翰林苑长的个人空间-翰林苑长个人主页-哔哩哔哩视频

Bilibili:热爱读研的铛铛的个人空间-热爱读研的铛铛个人主页-哔哩哔哩视频

部分截图来源于上述前辈,如有侵权,请评论区或私信联系删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值