【BIT矩阵分析】第4章 矩阵分解

文章汇总可见上面的专栏 或者 共享文档链接,可在下面的在线文档 或者 本文里评论指错,谢谢大家的共同努力:BIT研究生矩阵分析速成指南

文章有目录,标题里有⭐❗的重点看看,一定要懂哈!

本专栏内容基本涵盖考点,适用于 北京理工大学 研究生 矩阵分析课程,标⭐❗的看会基本能做计算题,足够及格,证明题主要分布在第3章和第5章。

这一章直接看后面的奇异值分解谱分解,必考!建议结合学堂在线视频和后面B站博主的视频学!

满秩分解

基本不考,可以不用看

答案结果不唯一

步骤

  1. 初等行变换,换成行最简(最好化成只有阶梯处是1,同列其他行为0)

  2. 找到线性无关列,在原始矩阵中取出这几列,为B

  3. 计算C

  4. A=BC

例题:

正交三角分解

基本不考,可以不用看

UR分解

UR分解答案唯一

A(m*r)=UC

U是次酉矩阵

R是r阶 对角线元素为正的三角矩阵

UR分解例题

 

LU分解

LU分解例题

⭐奇异值分解

奇异值

奇异值即AAH 非零 特征值 开根号

注意下:下一章讲的谱范数就是最大的奇异值

奇异值分解

定义

求解步骤:

  1. 计算AAH特征值,得到奇异值

  2. 计算AAH的标准正交特征向量,组成V

  3. 计算AHA的标准正交特征向量,组成UH (如果A里有i,不能用这种方式) / 反推UH(A里有i,必须用反推的方法)

  4. 切记!正交+单位化

奇异值分解例题

以下这些例题都是比较麻烦的办法,建议看【行数较多/含有i的奇异值分解例题】那部分,比较常用。


例题2 

⭐行数较多/含有i的奇异值分解例题

求出U或V其中一个,用A=UΔV反推另一个

大部分时候都是求得U,然后在A=UΔV等式左右都乘上U-1、Δ-1,然后就得到V了。

如果出现U的列数不够,列方程解出和前面已有列正交的向量作为缺少的列,如下。

切记H运算需要将复数正负符号取反(共轭)

注意:关键在求正交

(一些引理)

⭐谱分解【先判断是否正规矩阵:AAH=AHA

❗❗❗先判断是否正规矩阵:AAH=AHA

注意λ有0,0也要写到最后表达式

正规矩阵:

  1. 求λ及其特征向量

  2. 正交化单位化

  3. 写G

  4. 写表达式A=λG+....

其他矩阵:

  1. 求λ及其特征向量

  2. 特征向量组成P

  3. (P^-1)^T

  4. 写G

  5. 写表达式A=λG+....

正规矩阵 的 谱分解

即:AAH=AHA

需要单位化正交化

注意向量取的是H不是转置T,和下面的不同

可对角化矩阵/单纯矩阵 的 谱分解

除了正规矩阵以外的情况

不需要单位化

注意向量取的是转置T不是H,和上面的不同

步骤:

例题:

例题

❗复数域向量内积

如果上述正交化的变量有涉及到复数的,后面那个变量取共轭

可对角化

有n个两两互异特征值,或n个线性无关特征向量。

特征向量求法

步骤

  1. 找特征值

  2. 对每个特征值λ,代回λI-A

  3. 解方程(有几列就有几个未知数)

线性无关特征向量个数与秩的关系

对于n维矩阵A,其属于特征值λ的线性无关特征向量的个数为 n-r(A-λE) ,其中 r(A-λE) 表示矩阵 A-λE 的秩

普通特征向量个数和秩无关

❤️向量的内积 向量的模

感谢:

Bilibili(必看):翟男不宅的个人空间-翟男不宅个人主页-哔哩哔哩视频

Bilibili(校友总结):学疯蔚然的个人空间-学疯蔚然个人主页-哔哩哔哩视频

Bilibili(校友总结):这是谁啊好难猜的个人空间-这是谁啊好难猜个人主页-哔哩哔哩视频

Github(必看):GitHub - DarkIceField/BIT_Matrix_Analysis

Bilibili:翰林苑长的个人空间-翰林苑长个人主页-哔哩哔哩视频

Bilibili:热爱读研的铛铛的个人空间-热爱读研的铛铛个人主页-哔哩哔哩视频

如有侵权,请联系删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值