文章汇总可见上面的专栏 或者 共享文档链接,可在下面的在线文档 或者 本文里评论指错,谢谢大家的共同努力:BIT研究生矩阵分析速成指南
文章有目录,标题里有⭐❗的重点看看,一定要懂哈!
本专栏内容基本涵盖考点,适用于 北京理工大学 研究生 矩阵分析课程,标⭐❗的看会基本能做计算题,足够及格,证明题主要分布在第3章和第5章。
这一章直接看后面的奇异值分解和谱分解,必考!建议结合学堂在线视频和后面B站博主的视频学!
满秩分解
基本不考,可以不用看
答案结果不唯一
步骤
-
初等行变换,换成行最简(最好化成只有阶梯处是1,同列其他行为0)
-
找到线性无关列,在原始矩阵中取出这几列,为B
-
计算C
-
A=BC
例题:
正交三角分解
基本不考,可以不用看
UR分解
UR分解答案唯一
A(m*r)=UC
U是次酉矩阵
R是r阶 对角线元素为正的三角矩阵
UR分解例题
LU分解
LU分解例题
⭐奇异值分解
奇异值
奇异值即AAH 非零 特征值 开根号
注意下:下一章讲的谱范数就是最大的奇异值
奇异值分解
定义
求解步骤:
-
计算AAH特征值,得到奇异值
-
计算AAH的标准正交特征向量,组成V
-
计算AHA的标准正交特征向量,组成UH (如果A里有i,不能用这种方式) / 反推UH(A里有i,必须用反推的方法)
-
切记!正交+单位化
奇异值分解例题
以下这些例题都是比较麻烦的办法,建议看【行数较多/含有i的奇异值分解例题】那部分,比较常用。
例题2
⭐行数较多/含有i的奇异值分解例题
求出U或V其中一个,用A=UΔV反推另一个
大部分时候都是求得U,然后在A=UΔV等式左右都乘上U-1、Δ-1,然后就得到V了。
如果出现U的列数不够,列方程解出和前面已有列正交的向量作为缺少的列,如下。
切记H运算需要将复数正负符号取反(共轭)
注意:关键在求正交
(一些引理)
⭐谱分解【先判断是否正规矩阵:AAH=AHA】
❗❗❗先判断是否正规矩阵:AAH=AHA
注意λ有0,0也要写到最后表达式
正规矩阵:
-
求λ及其特征向量
-
正交化单位化
-
写G
-
写表达式A=λG+....
其他矩阵:
-
求λ及其特征向量
-
特征向量组成P
-
求(P^-1)^T
-
写G
-
写表达式A=λG+....
正规矩阵 的 谱分解
即:AAH=AHA
需要单位化正交化
注意向量取的是H不是转置T,和下面的不同
可对角化矩阵/单纯矩阵 的 谱分解
除了正规矩阵以外的情况
不需要单位化
注意向量取的是转置T不是H,和上面的不同
步骤:
例题:
例题
❗复数域向量内积
如果上述正交化的变量有涉及到复数的,后面那个变量取共轭
可对角化
有n个两两互异特征值,或n个线性无关特征向量。
特征向量求法
步骤
-
找特征值
-
对每个特征值λ,代回λI-A
-
解方程(有几列就有几个未知数)
线性无关特征向量个数与秩的关系
对于n维矩阵A,其属于特征值λ的线性无关特征向量的个数为 n-r(A-λE) ,其中 r(A-λE) 表示矩阵 A-λE 的秩
普通特征向量个数和秩无关
❤️向量的内积 向量的模
感谢:
Bilibili(必看):翟男不宅的个人空间-翟男不宅个人主页-哔哩哔哩视频
Bilibili(校友总结):学疯蔚然的个人空间-学疯蔚然个人主页-哔哩哔哩视频
Bilibili(校友总结):这是谁啊好难猜的个人空间-这是谁啊好难猜个人主页-哔哩哔哩视频
Github(必看):GitHub - DarkIceField/BIT_Matrix_Analysis
Bilibili:翰林苑长的个人空间-翰林苑长个人主页-哔哩哔哩视频
Bilibili:热爱读研的铛铛的个人空间-热爱读研的铛铛个人主页-哔哩哔哩视频
如有侵权,请联系删除