51Nod 1459 迷宫游戏 (最短路)

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
你来到一个迷宫前。该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分数。还有若干双向道路连结这些房间,你沿着这些道路从一个房间走到另外一个房间需要一些时间。游戏规定了你的起点和终点房间,你首要目标是从起点尽快到达终点,在满足首要目标的前提下,使得你的得分总和尽可能大。现在问题来了,给定房间、道路、分数、起点和终点等全部信息,你能计算在尽快离开迷宫的前提下,你的最大得分是多少么?
Input
第一行4个整数n (<=500), m, start, end。n表示房间的个数,房间编号从0到(n - 1),m表示道路数,任意两个房间之间最多只有一条道路,start和end表示起点和终点房间的编号。
第二行包含n个空格分隔的正整数(不超过600),表示进入每个房间你的得分。
再接下来m行,每行3个空格分隔的整数x, y, z (0<z<=200)表示道路,表示从房间x到房间y(双向)的道路,注意,最多只有一条道路连结两个房间, 你需要的时间为z。
输入保证从start到end至少有一条路径。
Output
一行,两个空格分隔的整数,第一个表示你最少需要的时间,第二个表示你在最少时间前提下可以获得的最大得分。
Input示例
3 2 0 2
1 2 3
0 1 10
1 2 11
Output示例
21 6
题解:直接套dijkstra算法的模版,然后加一个v数组存每个房间的得分,ans[]数组存s点到每个点能获得的最大得分,然后算最短距离的同时把ans也算出来(注意,dist[j] == dist[u] + a[u][j]的时候,要比较哪个ans大)

代码:

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
const int maxn=550;
#define INF 32767
//#define MAX(a,b) ((a)>(b)?(a):(b))
int a[maxn][maxn], dist[maxn], v[maxn], ans[maxn];
int vis[maxn];
int n, m, s, e;

void dij()
{
    for(int i=0;i<n;i++)
        dist[i]=a[s][i];
    dist[s]=0;
    ans[s]=v[s];
    for(int i = 0; i < n; i++)
	{
        int min = INF;
        int u = s;
        for(int j = 0; j < n; j++)
            if(!vis[j] && dist[j] < min)
			{
                u = j;
                min = dist[j];
            }
        vis[u] = 1;
        for(int j=0;j<n;j++)
		{
            if(dist[j] > dist[u] + a[u][j])
			{
                dist[j]=dist[u]+a[u][j];
                ans[j]=ans[u]+v[j];
            }
            else if(dist[j]==dist[u]+a[u][j])
                ans[j]=max(ans[j],ans[u]+v[j]);
        }
    }
}

int main()
{
    memset(ans, 0, sizeof(ans));
    memset(vis, 0, sizeof(vis));
    cin >> n >> m >> s >> e;
    for(int i = 0; i < n; i++)
    {
    	for(int j = 0; j < n; j++)
    	{
    		a[i][j] = INF;
		}
	}
    for(int i = 0; i < n; i++)
        cin >> v[i];
    for(int i = 0; i < m; i++)
	{
        int b, c, len;
        cin >> b >> c >> len;
        a[b][c] = a[c][b]=len;
    }
    dij();
    cout << dist[e] << ' ' << ans[e] << endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值