函数生成器

生成器

[1, 2, 3, 4, 5]

背景:
	通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,而且创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

  所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间,在Python中,这种一边循环一边计算的机制,称为生成器:generator
  	python中生成器是自定义迭代器的一种
    
# 生成器如何使用
关键字:yield

'''
当函数中一旦出现了yield关键字,函数在没有被调用的时候仍然是普通函数,但是只要一调用函数,那么,该函数就不是普通函数了
就变成了生成器
'''
def index():
    print('from index')
    print('from index')
    print('from index')
    yield 123,234,345 # 以元组的方式返回
    print('second')
    print('second')
    print('second')
    print('second')
    yield 'hello'
    print('three')
    yield

res=index()  # res.__iter__()
print(res)  # <generator object index at 0x000002CDB20BEA50>

## 生成器其实就是一个自定义的迭代器
# res.__next__() # 只要你调用next方法,代码就会走到函数中第一个yield关键字所在的位置停住
# res.__next__() # 代码从上一次yield停住的地方继续往下执行,走到遇到下一个yield停住
print(res.__next__()) # None  123
print(res.__next__()) # None  123
print(res.__next__()) # None  123

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

生成器练习题

利用生成器的原理实现range函数的功能
# range() 三种玩法

def my_range():
    pass

for i in range(0,10):
    print(i)

    
def my_range(start, stop=None, step=1):
    if not stop: # 意味着只传了一个参数,stop没有值
        stop = start
        start = 0
    while start < stop:
        yield start
        start+=step

# print(my_range(0, 20))
# for i in my_range(0, 20):
#     print(i)

# for i in my_range(0, 20, 2):
#     print(i)

for i in my_range(10):
    print(i)

生成器yield的其他用法

def eater(name):
    print('%s:正在吃...' % name)
    while True:
        food = yield
        print('%s正在吃%s' % (name, food))

'''eater就变成了生成器'''
res=eater('jerry') # 生成器对象:generator object
print(res) # <generator object eater at 0x0000021869489B30>

res.__next__()
# res.__next__()

# send做了两件事情:1. 传值给yield、2. 执行__next__
res.send('包子')
res.send('水果')
res.send('水果')
res.send('水果')
res.send('水果')
res.send('水果')
res.send('水果')
res.send('水果')
res.send('水果')

生成器表达式

列表生成式
res = [name for name in names_list]
print(res) # 就是一个列表

res1 = (name for name in names_list)
print(res1)
names_list = ['kevin', 'jerry', 'tony', 'oscar']
res1 = (name for name in names_list)
print(res1) # <generator object <genexpr> at 0x00000218F4569CF0>

print(res1.__next__())
print(res1.__next__())
print(res1.__next__())
print(res1.__next__())

"""生成器表达式如果不使用数据,就不给你数据"""

把迭代器、生成器看成是一个工厂,什么时候需要数据工厂就给你加工数据
目的:就是为了节省内存空间

生成器笔试题

# 求和
def add(n, i):
    return n + i
# 调用之前是函数 调用之后是生成器
def test():
    for i in range(4):
        yield i
g = test()  # 初始化生成器对象
for n in [1, 10]:
    g = (add(n, i) for i in g)

res = list(g)
print(res)

#A. res=[10,11,12,13]
#B. res=[11,12,13,14]
C. res=[20,21,22,23]
#D. res=[21,22,23,24]

yield和return的对比

yield
	1. 代码遇到yield不会停止,而是停住
    2. yield也可以有返回值,并且还支持多个,以元组的形式返回
    3. yield可以把一个函数变成生成器,next取值
    

return
	1. 代码遇到return就会停止
    2. return可以有返回值并且还支持多个,以元组的形式返回
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值