动态规划之合唱队形

题目

P1091 [NOIP2004 提高组] 合唱队形
这道题的题意就是最少需要移除几个同学才能做到同学们的身高满足一个"三角形的序列"(即左半边严格单调上升,右半边严格单调下降);我们可以思考一下 最少 需要移除几个同学,那不就是找最长的一个严格上升的序列嘛,那不就是 分别求左边最长上升子序列和右边的最长上升子序列嘛 ;这样就很好解决了;

代码细节

// web:https://www.luogu.com.cn/problem/P1091
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
typedef pair<ll, ll> PLL;
const int N = 1e5 + 10;
const int INF = 1e9;
const ll INFL = 1e18;
int n;

signed main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    cin >> n;
    vector<int> a(n + 1), z(n + 1, 1), y(n + 1, 1);
    for (int i = 1; i <= n; i++)
        cin >> a[i];
    // 求左边的最长上升子序列;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j < i; j++)
            if (a[j] < a[i])
                z[i] = max(z[i], z[j] + 1);
	// 求右边的最长下降子序列;
    for (int i = n; i >= 1; i--)
        for (int j = n; i < j; j--)
            if (a[j] < a[i])
                y[i] = max(y[i], y[j] + 1);

    int res = 0;
    // 因为这个包含了两个a[i]所以要减掉一个
    for (int i = 1; i <= n; i++)
        res = max(res, z[i] + y[i] - 1);
    // res求出来的是最长子序列,所以要n - res求出最少移除几个人;
    cout << n - res;

    return 0;
}

总结

其实这道题和最长上升子序列和导弹拦截这类题目都有一个共同点:就是要求一个最长的单调序列,这个序列可能是严格单调也可能不是,但最后都是单调,所以最后可以转化成一道线性dp的模版题–> 最长上升子序列 ,就是两个循环嵌套就解决了;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值