(Python Primary) - 廖雪峰Python3 - 5.高级特性

5. 高级特性

5.1 切片(Slice)

  • L[m:n]表示取索引为m到n-1的三个元素,若m=0则可省略为L[:n]

  • L[:10:2]表示前10个元素,每两个取一个

  • L[::5]表示所有元素每5个取一个

  • L[:]可复制一个list

  • L[::-1]表示list翻转

  • list、tuple、字符串都可用切片的方法

5.2 迭代

  • 采用for...in来完成遍历迭代
  • dict的迭代
    • for key in dict迭代的是key
    • for value in dict.values()迭代的时value
    • for k, v in dict.items()迭代的是key和value
  • 注意:需要数据类型为可迭代的对象(即对象为Iterable)
  • list、tuple、dict、str均可迭代
  • 判断对象是否可迭代:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
  • for i, value in enumerate('A', 'B', 'C')可迭代索引和元素

5.3 列表生成式

  • Python内置用来创建list的生成式
  • list(range(1, 11)) or [x for x in range(1, 11)]生成1-10的list
  • e.g. 创建当前目录下文件名的list
import os
[d for d in os.listdir('.')]
  • 注意:for后的if是过滤条件不能带else,但是可以在for前加[x if x % 2 == 0 else -x for x in range(1, 11)]

5.4 生成器generator

  • 列表生成式的缺点:受到内存限制,列表容量肯定是有限的
  • 解决:一边循环生成一边计算→生成器(generator)
  • 把列表生成式的[ ]改成( ),通过next()函数获取下一个返回值(无元素后抛出StopIteration),或用for...in循环迭代
g = (x * x for x in range(10))
next(g)
next(g)
for n in g:...
  • 如果一个函数包含yield,那么这个函数就是一个generator,在每次调用next()的时候遇到yield就会返回,再次执行时从上次返回的yield处继续执行
def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5  
  • 注意:在使用for循环调用generator的时候拿不到return的返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中
>>> for n in fib(6):
...     print(n)
...
1
1
2
3
5
8

>>> g = fib(6)
>>> while True:
...     try:
...         x = next(g)
...         print('g:', x)
...     except StopIteration as e:
...         print('Generator return value:', e.value)
...         break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done

5.5 迭代器Iterator

  • 可迭代对象Iterable类型:list、tuple、dict、set、str、generator

  • 这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

    • 可以使用isinstance()判断一个对象是否是Iterable对象
>>> from collections.abc import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
  • 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator
    • 可以使用isinstance()判断一个对象是否是Iterator对象
    • 生成器都是Iterator对象
>>> from collections.abc import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
  • listdictstrIterable变成Iterator可以使用iter()函数:
>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True
  • 总结
    • 凡是可作用于for循环的对象都是Iterable类型;
    • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
    • 集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
    • Python的for循环本质上就是通过不断调用next()函数实现的

参考教程

廖雪峰老师的Python3教程

(转载整理自网络,如有侵权,联系本人删除,仅供技术总结使用)

展开阅读全文

Python数据分析与挖掘

01-08
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值