动态规划-背包基础专题

一、背包问题

1.01背包

1.1  二维01背包  

http://xyoj.xynu.edu.cn/problem.php?id=1416

//t[i]->代价  time->可承受最高代价  p[i]->需求
for( int i=0 ; i<n ; i++ ){
	for( int j=time ; j>=t[i] ; j-- ){
		dp[j] = max( dp[j],dp[j-t[i]]+p[i] );
	}
}

1.2  二维01背包(双重代价)

http://xyoj.xynu.edu.cn/problem.php?id=1418

//v[i]->代价1  V->可承受最高代价1  
//m[i]->代价2  M->可承受最高代价2 
//P[i]->需求
for( int i=0 ; i<n ; i++ ){
	for( int j=V ; j>=v[i] ; j-- ){
		for( int k=M ; k>=m[i] ; k-- ){
			dp[j][k] = max( dp[j][k],dp[j-v[i]][k-m[i]]+p[i] );
		}
	}
}

2.完全背包

2.1  二维完全背包

http://xyoj.xynu.edu.cn/problem.php?id=1441

//w[i]->代价 v->可承受最高代价 
for( int i=0 ; i<n ; i++ ){
	for( int j=w[i] ; j<=v ; j++ ){
		dp[j] = max( dp[j],dp[j-w[i]]+c[i] );
	}
}

3.分组背包

http://xyoj.xynu.edu.cn/problem.php?id=1430

//g[i]->每个物品的组号  T->组号  M->可承受最高代价  w[i]->代价  
//v[i]->价值 
for( int k=1 ; k<=T ; k++ ){
	for( int j=M ; j>=0 ; j-- ){
		for( int i=0 ; i<n ; i++ ){
			if( w[i]<=j && g[i]==k ){
				dp[j] = max( dp[j],dp[j-w[i]]+v[i] );
}
		}
	}
}

4.多重背包

http://xyoj.xynu.edu.cn/problem.php?id=1428

//p[i]->物品的件数  v[i]->价值  m[i]->代价  M->可承受最高代价
for( int i=0 ; i<n ; i++ ) {
	for( int k=1 ; k<=p[i] ; k++ ) {
		for( int j=M ; j>=k*m[i] ; j-- ) {
			dp[j] = max( dp[j],dp[j-m[i]]+v[i] );
		}
	}
}

5.混合背包(01,完全,多重)

http://xyoj.xynu.edu.cn/problem.php?id=1435

//p[i]->物品数量(0完全,1零一,其余多重)
//w[i]->代价 M->可承受最高代价 
for( int i=0 ; i<n ; i++ ){
	if( p[i]==1 ){  //01背包 
		for( int j=M ; j>=w[i] ; j-- ){
			dp[j] = max( dp[j],dp[j-w[i]]+v[i] );
		}
	}else if( p[i]==0 ){  //完全背包 
		for( int j=w[i] ; j<=M ; j++ ){
			dp[j] = max( dp[j],dp[j-w[i]]+v[i] );
		}
	}else {  //多重背包 
		for( int k=1 ; k<=p[i] ; k++ ){
			for( int j=M ; j>=w[i] ; j-- ){
				dp[j] = max( dp[j],dp[j-w[i]]+v[i] );
			}
		}
	}
}
持续添加中~~~
阅读更多
版权声明:独乐乐不如众乐乐 https://blog.csdn.net/Revenant_Di/article/details/79971649
个人分类: *****动态规划*****
上一篇树状数组讲解
下一篇51Nod-1174 区间中最大的数
想对作者说点什么? 我来说一句

背包问题九讲.doc

2016年07月10日 93KB 下载

没有更多推荐了,返回首页

关闭
关闭