XYNUOJ1560-window

1560: window

时间限制: 1 Sec  内存限制: 128 MB
提交: 7  解决: 4
您该题的状态:已完成
[提交][状态][讨论版]

题目描述

      给你一个长度为N的数组,一个长为K的滑动的窗体从最左移至最右端,你只能见到窗口的K个数,每次窗体向右移动一位,如下表:

Window position

Min value

Max value

[ 1 3 -1 ] -3 5 3 6 7

-1

3

1 [ 3 -1 -3 ] 5 3 6 7

-3

3

1 3 [ -1 -3 5 ] 3 6 7

-3

5

1 3 -1 [ -3 5 3 ] 6 7

-3

5

1 3 -1 -3 [ 5 3 6 ] 7

3

6

1 3 -1 -3 5 [ 3 6 7 ]

3

7

你的任务是找出窗口在各位置时的max value,min value. 

数据范围: 
20%: n<=500; 50%: n<=100000; 
100%: n<=1000000;

输入

第1行n,k,第2行为长度为n的数组

输出

2行,第1行每个位置的min value,第2行每个位置的max value

样例输入

8 3 1 3 -1 -3 5 3 6 7

样例输出

-1 -3 -3 -3 3 33 3 5 5 6 7

提示

单调队列

应该算是一个单调队列的模板题了吧,单调队列博大精深难过

#include <stdio.h>
#include <deque>
#define N 1000010
using namespace std;

struct Node {
	int id;
	int value;
};

int cma,cmi;  //下标
int s[N];
int Max[N];    //存储最大值的数组
int Min[N];    //存储最小值的数组
deque<Node> ma;//维护最大值的队列
deque<Node> mi;//维护最小值的队列

//最大值队列进栈 
void push_ma( int id , int value ){
	Node temp;
	temp.id = id;
	temp.value = value;
	ma.push_back(temp);
}

//最小值队列进栈 
void push_mi( int id , int value ){
	Node temp;
	temp.id = id;
	temp.value = value;
	mi.push_back(temp);
}

int main(){
	int n,k;
	while( ~scanf( "%d%d",&n,&k ) ){
		cma = cmi = 0;
		for( int i=0 ; i<n ; i++ )
			scanf( "%d",&s[i] );
		
		push_ma( 0,s[0] );
		push_mi( 0,s[0] );
		
		for( int i=1 ; i<k ; i++ ){
			//更新前k个值中的最大值 
			while( !ma.empty() && s[i]>=ma.back().value )
				ma.pop_back();
			push_ma( i,s[i] );
			//更新前k个值中的最小值 
			while( !mi.empty() && s[i]<=mi.back().value )
				mi.pop_back();
			push_mi( i,s[i] );
		}
		//取得第一个元素 
		Max[cma++] = ma.front().value;
		Min[cmi++] = mi.front().value;
		
		for( int i=k ; i<n ; i++ ){
			//每次更新最大值队列 
			while( !ma.empty() && s[i]>=ma.back().value )
				ma.pop_back();
			push_ma( i,s[i] );
			//更新最小值队列 
			while( !mi.empty() && s[i]<=mi.back().value )
				mi.pop_back();
			push_mi( i,s[i] );
			//将已不再范围内的最大值队列元素出队 ,数组取得当前位的最大值 
			while( ma.front().id<=i-k )
				ma.pop_front();
			Max[cma++] = ma.front().value;
			//将已不再范围内的最小值队列元素出队 
			while( mi.front().id<=i-k )
				mi.pop_front();
			Min[cmi++] = mi.front().value;
			
		}
		//输出 
		for( int i=0 ; i<cma-1 ; i++ )
			printf( "%d ",Min[i] );
		printf( "%d\n",Min[cma-1] );
		for( int i=0 ; i<cmi-1 ; i++ )
			printf( "%d ",Max[i] );
		printf( "%d\n",Max[cmi-1] );
	}
}

有什么想法欢迎交流~~~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值