51Nod-威佐夫游戏V2

基准时间限制:1 秒 空间限制:131072 KB 分值: 0  难度:基础题
 收藏
 关注
有2堆石子。A B两个人轮流拿,A先拿。每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出2堆石子的数量,问最后谁能赢得比赛。
例如:2堆石子分别为3颗和5颗。那么不论A怎样拿,B都有对应的方法拿到最后1颗。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔。(1 <= N <= 10^18)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
3 5
3 4
1 9
Output示例
B
A
A

    这个题有点不一样了,如果你用了double你会发现你的答案是错误的,因为这一题的数字精度太高了,double的15位有效数字远远满足不了该题的要求,因此我们将黄金分割数存在一个数组里来强行提高精度。


#include <stdio.h>
#include <math.h> 
typedef long long ll;

ll hj[3] = { 618033988,749894848,204586834 };
ll Mod = 1000000000;

void swap( long long &a , long long &b ){
	a += b;
	b = a - b;
	a = a - b;
}

int main(){
	int t;
	long long a,b;
	scanf( "%d",&t );
	while( t-- ){
		scanf( "%lld%lld",&a,&b );
		if( a<b )
			swap(a,b);
		ll x = a-b;
		ll ta = x/Mod;
		ll tb = x%Mod;
		ll tp = tb * hj[2];
		tp = ta*hj[2] + tb*hj[1] + tp/Mod;  
        tp = ta*hj[1] + tb*hj[0] + tp/Mod;  
        tp = x + ta*hj[0] + tp/Mod;
		if( tp==b ){
			printf( "B\n" );
		}else{
			printf( "A\n" );
		}
	}
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值