51nod 1185 威佐夫游戏V2
有2堆石子。A B两个人轮流拿,A先拿。每次可以从一堆中取任意个或从2堆中取相同数量的石子,但不可不取。拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出2堆石子的数量,问最后谁能赢得比赛。
例如:2堆石子分别为3颗和5颗。那么不论A怎样拿,B都有对应的方法拿到最后1颗。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数分别是2堆石子的数量,中间用空格分隔。(1 <= N <= 10^18)
Output
共T行,如果A获胜输出A,如果B获胜输出B。
Input示例
3
3 5
3 4
1 9
Output示例
B
A
A
分析:高精度+黄金分割定律,N到2<<64,用double表示黄金分割率会出现精度问题,所以要将其分割成三部分每部分9位。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD=1e9;
int Gold[3]={618033988,749894848,204586834};
int main(){
	int T;scanf("%d",&T);
	while(T--){
		LL a,b,temp;
		scanf("%lld%lld",&a,&b);
		if(a<b)	swap(a,b);
		LL dist=a-b,ta=dist/MOD,tb=dist%MOD;
		temp=Gold[2]*tb;
		temp=ta*Gold[2]+tb*Gold[1]+temp/MOD;
		temp=ta*Gold[1]+tb*Gold[0]+temp/MOD;
		temp=dist+ta*Gold[0]+temp/MOD;
		if(temp==b)	printf("B\n");
		else printf("A\n");
	}
	return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34963125/article/details/52386574
文章标签: 51nod 波特博弈
个人分类: 博弈论
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

51nod 1185 威佐夫游戏V2

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭