1、题目描述
初始时有 n 个灯泡关闭。
第 1 轮,你打开所有的灯泡。 第 2 轮,每两个灯泡你关闭一次。 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。
第 i 轮,每 i 个灯泡切换一次开关。 对于第 n 轮,你只切换最后一个灯泡的开关。
找出 n 轮后有多少个亮着的灯泡。
提示:
0 <= n <= 109
2、示例
输入:n = 3
输出:1
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭].
你应该返回 1,因为只有一个灯泡还亮着。
3、题解
基本思想:数学,第i个灯泡的反转次数等于它所有因子(包括1和i)的个数,一开始的状态的灭的,只有反转奇数次才会变成亮的,所以只有因子个数为奇数的灯泡序号才会亮,只有平方数的因子数为奇数(比如6=1*6,2*3,它们的因子总是成对出现的,而4=1*4,2*2,只有平方数的平方根因子会只出现1次),所以最终答案等于n以内(包括n和1)的平方数数量,只要计算sqrt(n)即可。
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution {
public:
int bulbSwitch(int n) {
//基本思想:数学,第i个灯泡的反转次数等于它所有因子(包括1和i)的个数,
//一开始的状态的灭的,只有反转奇数次才会变成亮的,所以只有因子个数为奇数的灯泡序号才会亮,
//只有平方数的因子数为奇数(比如6=1*6,2*3,它们的因子总是成对出现的,而4=1*4,2*2,只有平方数的平方根因子会只出现1次),
//所以最终答案等于n以内(包括n和1)的平方数数量,只要计算sqrt(n)即可
return static_cast<int>(sqrt(n));
}
};
int main()
{
Solution solute;
int n=231728;
cout<<solute.bulbSwitch(n)<<endl;
return 0;
}