319灯泡开关(数学)

1、题目描述

初始时有 n 个灯泡关闭。

第 1 轮,你打开所有的灯泡。 第 2 轮,每两个灯泡你关闭一次。 第 3 轮,每三个灯泡切换一次开关(如果关闭则开启,如果开启则关闭)。

第 i 轮,每 i 个灯泡切换一次开关。 对于第 n 轮,你只切换最后一个灯泡的开关。

找出 n 轮后有多少个亮着的灯泡。

提示:

  • 0 <= n <= 109

2、示例

输入:n = 3
输出:1 
解释:
初始时, 灯泡状态 [关闭, 关闭, 关闭].
第一轮后, 灯泡状态 [开启, 开启, 开启].
第二轮后, 灯泡状态 [开启, 关闭, 开启].
第三轮后, 灯泡状态 [开启, 关闭, 关闭]. 

你应该返回 1,因为只有一个灯泡还亮着。

3、题解

基本思想:数学,第i个灯泡的反转次数等于它所有因子(包括1和i)的个数,一开始的状态的灭的,只有反转奇数次才会变成亮的,所以只有因子个数为奇数的灯泡序号才会亮,只有平方数的因子数为奇数(比如6=1*6,2*3,它们的因子总是成对出现的,而4=1*4,2*2,只有平方数的平方根因子会只出现1次),所以最终答案等于n以内(包括n和1)的平方数数量,只要计算sqrt(n)即可。

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
class Solution {
public:
    int bulbSwitch(int n) {
        //基本思想:数学,第i个灯泡的反转次数等于它所有因子(包括1和i)的个数,
        //一开始的状态的灭的,只有反转奇数次才会变成亮的,所以只有因子个数为奇数的灯泡序号才会亮,
        //只有平方数的因子数为奇数(比如6=1*6,2*3,它们的因子总是成对出现的,而4=1*4,2*2,只有平方数的平方根因子会只出现1次),
        //所以最终答案等于n以内(包括n和1)的平方数数量,只要计算sqrt(n)即可
        return static_cast<int>(sqrt(n));
    }
};
int main()
{
    Solution solute;
    int n=231728;
    cout<<solute.bulbSwitch(n)<<endl;
    return 0;
}


        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值