494目标和(动态规划,01背包)

1、题目描述

给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

提示:

  • 数组非空,且长度不会超过 20 。
  • 初始的数组的和不会超过 1000 。
  • 保证返回的最终结果能被 32 位整数存下。

2、示例

输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:

-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

3、题解

基本思想:动态规划,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2。dp[i]表示填充容量为i的方法个数。注意:如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0。

01背包问题模板:

f[j]代表当前背包容量为j的时候,可以获取的最大价值。完全背包是从左向右遍历,f[j-V[i]]取到的是拿第i个物品时的值,是新值,可以重复无限的拿,f[j]的值也会随之增加。
V:商品的体积
W:商品的价值

//01背包
for (int i = 0; i < n; i++) {
    for (int j = m; j >= V[i]; j--) {
        f[j] = max(f[j], f[j-V[i]] + W[i]);
    }
}
//完全背包
for (int i = 0; i < n; i++) {
    for (int j = V[i]; j <= m; j++) {
        f[j] = max(f[j], f[j-V[i]] + W[i]);
    }
}
//dp[i]表示填充容量为i的方法个数
dp[0]=1;
for(auto num:nums)
{
    for(int j=w;j>=num;j--)
    {
        dp[j]+=dp[j-num];
    }
}
//dp[i]表示是否能填充容量为i
dp[0]=true;
for(auto num:nums)
{
    for(int j=w;j>=num;j--)
    {
        dp[j]=dp[j]||dp[j-num];
    }
}
#include<iostream>
#include<vector>
#include<algorithm>
#include<numeric>
#include<math.h>
using namespace std;
class Solution {
public:
    int res=0;
    int findTargetSumWays(vector<int>& nums, int S) {
        //基本思想:递归,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2
        //这是因为S+(sum-S)/2-(sum-S)/2=S,S+(sum-S)/2+(sum-S)/2=sum
        //注意:
        //1、因为+0和-0都不影响结果,去除nums中所有的0,并且最后结果*2^zero
        //2、如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0
        int zero=0;
        for(int i=0;i<nums.size();i++)
        {
            while(i<nums.size()&&nums[i]==0)
            {
                zero+=1;
                nums.erase(nums.begin()+i);
            }
        }
        int sum=accumulate(nums.begin(),nums.end(),0);
        sum-=S;
        if(sum<0||sum&1)  return res;
        Recursion(nums,sum/2,0);
        return res*pow(2,zero);
    }
    void Recursion(vector<int>& nums, int sum,int pos)
    {
        if(sum<=0)
        {
            if(sum==0) res+=1;
            return;
        }
        for(int i=pos;i<nums.size();i++)
        {
            Recursion(nums,sum-nums[i],i+1);
        }
        return;
    }
};
class Solution1 {
public:
    int findTargetSumWays(vector<int>& nums, int S) {
        //基本思想:动态规划,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2
        //dp[i]表示填充容量为i的方法个数
        //注意:如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0
        int sum=accumulate(nums.begin(),nums.end(),0);
        sum-=S;
        if(sum<0||sum&1)  return 0;
        int w=sum/2;  //背包容量
        vector<int> dp(w+1,0);  //dp[i]表示填充容量为i的方法个数
        dp[0]=1;
        for(auto num:nums)
        {
            for(int j=w;j>=num;j--)
            {
                dp[j]+=dp[j-num];
            }
        }
        return dp[w];
    }
};
int main()
{
    Solution1 solute;
    vector<int> nums={1,1,1,1,1};
    int S=3;
    cout<<solute.findTargetSumWays(nums,S)<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值