1、题目描述
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
提示:
- 数组非空,且长度不会超过 20 。
- 初始的数组的和不会超过 1000 。
- 保证返回的最终结果能被 32 位整数存下。
2、示例
输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
3、题解
基本思想:动态规划,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2。dp[i]表示填充容量为i的方法个数。注意:如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0。
01背包问题模板:
f[j]代表当前背包容量为j的时候,可以获取的最大价值。完全背包是从左向右遍历,f[j-V[i]]取到的是拿第i个物品时的值,是新值,可以重复无限的拿,f[j]的值也会随之增加。
V:商品的体积
W:商品的价值
//01背包
for (int i = 0; i < n; i++) {
for (int j = m; j >= V[i]; j--) {
f[j] = max(f[j], f[j-V[i]] + W[i]);
}
}
//完全背包
for (int i = 0; i < n; i++) {
for (int j = V[i]; j <= m; j++) {
f[j] = max(f[j], f[j-V[i]] + W[i]);
}
}
//dp[i]表示填充容量为i的方法个数
dp[0]=1;
for(auto num:nums)
{
for(int j=w;j>=num;j--)
{
dp[j]+=dp[j-num];
}
}
//dp[i]表示是否能填充容量为i
dp[0]=true;
for(auto num:nums)
{
for(int j=w;j>=num;j--)
{
dp[j]=dp[j]||dp[j-num];
}
}
#include<iostream>
#include<vector>
#include<algorithm>
#include<numeric>
#include<math.h>
using namespace std;
class Solution {
public:
int res=0;
int findTargetSumWays(vector<int>& nums, int S) {
//基本思想:递归,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2
//这是因为S+(sum-S)/2-(sum-S)/2=S,S+(sum-S)/2+(sum-S)/2=sum
//注意:
//1、因为+0和-0都不影响结果,去除nums中所有的0,并且最后结果*2^zero
//2、如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0
int zero=0;
for(int i=0;i<nums.size();i++)
{
while(i<nums.size()&&nums[i]==0)
{
zero+=1;
nums.erase(nums.begin()+i);
}
}
int sum=accumulate(nums.begin(),nums.end(),0);
sum-=S;
if(sum<0||sum&1) return res;
Recursion(nums,sum/2,0);
return res*pow(2,zero);
}
void Recursion(vector<int>& nums, int sum,int pos)
{
if(sum<=0)
{
if(sum==0) res+=1;
return;
}
for(int i=pos;i<nums.size();i++)
{
Recursion(nums,sum-nums[i],i+1);
}
return;
}
};
class Solution1 {
public:
int findTargetSumWays(vector<int>& nums, int S) {
//基本思想:动态规划,问题转换为子集求和问题即01背包问题,对nums中的元素添加+或-最后结果等于S,相当于在nums中找到元素和为(sum-S)/2
//dp[i]表示填充容量为i的方法个数
//注意:如果sum-S是奇数,说明nums中的元素通过+或-不能得到S返回0
int sum=accumulate(nums.begin(),nums.end(),0);
sum-=S;
if(sum<0||sum&1) return 0;
int w=sum/2; //背包容量
vector<int> dp(w+1,0); //dp[i]表示填充容量为i的方法个数
dp[0]=1;
for(auto num:nums)
{
for(int j=w;j>=num;j--)
{
dp[j]+=dp[j-num];
}
}
return dp[w];
}
};
int main()
{
Solution1 solute;
vector<int> nums={1,1,1,1,1};
int S=3;
cout<<solute.findTargetSumWays(nums,S)<<endl;
return 0;
}