Numpy的fancy indexing中多维数组的用法
问题如下图
import numpy as np
b = np.array([[1.5,2,3],[4,5,6]])
print(b)
print(b[[1,0,1,0]][:,[0,1,2,0]])
下面是几次尝试
b = np.array([[1.5, 2, 3], [4, 5, 6]])
print(b)
[[1.5 2. 3. ]
[4. 5. 6. ]]
print(b[[1, 0, 1, 0], [0, 1, 2, 0]])
[4. 2. 6. 1.5]
# 首先,我们看一下 b[[1, 0, 1, 0]]
print(b[[1, 0, 1, 0]])
[[4. 5. 6. ]
[1.5 2. 3. ]
[4. 5. 6. ]
[1.5 2. 3. ]]
print(b[[1, 0, 1, 0][:]])
[[4. 5. 6. ]
[1.5 2. 3. ]
[4. 5. 6. ]
[1.5 2. 3. ]]
# 后面[]中的逗号前的‘:’指行,逗号后,指列
print(b[[1, 0, 1, 0]][:, [0, 1, 2, 0]])
[[4. 5. 6. 4. ]
[1.5 2. 3. 1.5]
[4. 5. 6. 4. ]
[1.5 2. 3. 1.5]]
print(b[[1, 0, 1, 0]][0:2, [0, 1, 2, 0, 1, 2]])
[[4. 5. 6. 4. 5. 6. ]
[1.5 2. 3. 1.5 2. 3. ]]
print(b[[1, 0, 1, 0, 1]][:, [0, 1, 2, 0, 1, 2]])
[[4. 5. 6. 4. 5. 6. ]
[1.5 2. 3. 1.5 2. 3. ]
[4. 5. 6. 4. 5. 6. ]
[1.5 2. 3. 1.5 2. 3. ]
[4. 5. 6. 4. 5. 6. ]]
经过测试,[:,[0,1,2,0]] 逗号前的冒号是指行的范围,行的范围根据前面 b[[1,0,1,0]] 中的值来定,在本例中,最长不会超过4行;[0,1,2,0] 分别指该行的第几列。