1. 什么是AI Agent?
1.1 定义
AI Agent是一个自主智能体,能够根据用户输入的目标,自主规划、执行和优化任务,最终生成结果。它不像传统聊天模型(比如ChatGPT)只回答单一问题,而是能处理多步骤、需要工具支持的复杂任务。例如:
- 你要求“写一篇关于AI伦理的文章”,AI Agent会自动搜索资料、整理信息、撰写草稿并校对。
- 在制造业中,ManuS可能优化生产流程,自动调整机器参数。
1.2 典型AI Agent
- AutoGPT:通用型Agent,适合研究、写作、代码生成等任务,基于大语言模型(LLM)如GPT-4。
- ManuS/OpenManuS:专注于制造业,处理设计优化、生产调度等任务,可能结合多Agent协作和RL。
- 其他例子:LangChain Agent、CrewAI、BabyAGI。
1.3 核心能力
AI Agent的强大之处在于:
- 自主性:无需每步都由用户指导。
- 工具集成:能调用外部资源(如搜索引擎、数据库、Python解释器)。
- 迭代优化:通过反思和反馈改进输出。
- 协作性:多Agent系统可以像团队一样分工合作。
1.4 为什么学习AI Agent?
- 前沿技术:AI Agent是AI自动化的未来,广泛应用于科研、工业、商业。
- 职业前景:掌握Agent开发是AI工程师的核心技能。
- 动手实践:适合学生通过项目快速入门,结合NLP和RL。
接下来,我们深入探讨四个核心组件,确保你从理论到实践全面掌握。
2. 工作流(Workflow):AI Agent的任务蓝图
2.1 什么是工作流?
工作流(Workflow)是AI Agent执行任务的步骤序列,就像一个详细的“剧本”或“流程图”。它定义了Agent如何从接收用户目标开始,经过一系列操作,最终完成任务。例如,如果目标是“分析某公司财务报表”,工作流会指导Agent读取文件、提取数据、计算指标并生成报告。
2.2 为什么需要工作流?
复杂任务通常涉及多个步骤,AI Agent需要一个清晰的计划来:
- 分解任务:将大目标拆成小步骤。
- 调用工具:选择合适的资源(如API、代码)。
- 动态调整:根据中间结果决定下一步。
- 确保完成:整合所有步骤,交付最终结果。
2.3 工作流的组成
一个典型的工作流包含以下五个部分:
- 任务输入(Task Input):用户提供的目标,比如“总结最近的AI新闻”。
- 任务分解(Task Decomposition):将目标拆分为子任务,比如:
- 搜索相关文章。
- 过滤高质量内容。
- 总结关键信息。
- 工具调用(Tool Calling):使用外部工具完成子任务,比如:
- Web搜索API(如Serper.dev)查找文章。
- Python脚本处理数据。
- 语言模型(LLM)生成文本。
- 决策循环(Decision Loop):Agent根据当前状态决定下一步,比如“如果文章不足,重新搜索;否则开始总结”。
- 输出生成(Output Generation):整合结果,生成最终输出,比如一篇新闻摘要。
2.4 工作流的工作原理:REPS循环
大多数AI Agent(如AutoGPT)采用REPS循环(推理、执行、规划、总结)来实现工作流:
- 推理(Reason):分析当前状态,比如“我有3篇文章,是否足够?”
- 执行(Execute):采取行动,比如调用搜索API或生成文本。
- 规划(Plan):决定下一步,比如“接下来总结文章”。
- 总结(Summarize):反思进度,比如“任务是否完成?需要改进什么?”
这个循环不断重复,直到目标达成。
2.5 具体实现:AutoGPT的工作流
AutoGPT是学习工作流的绝佳起点。它的Workflow基于模块化块(Blocks),每个块代表一个操作(如输入、搜索、总结)。用户可以通过以下方式定义工作流:
- 低代码界面:用图形界面拖拽块,连接成流程。
- 配置文件:用YAML或JSON描述块的顺序和参数。
- 代码实现:用Python直接编写工作流逻辑。
2.5.1 示例:新闻摘要工作流
任务:用户输入“总结最近的AI新闻”。
工作流步骤:
- 输入块:接收用户目标。
- 搜索块:调用Web搜索API(如Serper.dev)查找文章。
- 过滤块:选择前3篇最相关的文章。
- 总结块:用GPT-4生成每篇文章的摘要。
- 整合块:合并摘要,生成最终报告。
- 输出块:返回结果给用户。
YAML配置文件:
workflow:
- block: input
name: Accept user prompt
prompt: "Summarize recent AI news"
- block: search
name: Search web
api: serper.dev
query: "recent AI news"
max_results: 10
- block: filter
name: Select top articles
criteria: relevance
max_results: 3
- block: summarize
name: Summarize articles
model: gpt-4
prompt: "Summarize each article in 50 words"
- block: integrate
name: Combine summaries
model: gpt-4
prompt: "Combine these summaries into a 200-word report"
- block: output
name: Return final report
Python实现:
def execute_workflow(workflow, input_data):
state = input_data
for block in workflow:
if block["type"] == "search":
state = search_tool(state, block["api"], block["query"])
elif block["type"] == "filter":
state = filter_tool(state, block["criteria"], block["max_results"])
elif block["type"] == "summarize":
state = summarize_tool(state, block["model"], block["prompt"])
elif block["type"] == "integrate":
state = integrate_tool(state, block["model"], block["prompt"])
elif block["type"] == "output":
return state
return state
def search_tool(query, api, max_results):
# Simulated API call
return [{
"title": "AI in Healthcare", "content": "..."}, {
"title": "AI Ethics", "content": "..."}]
def filter_tool(articles, criteria, max_results):
# Select top articles based on relevance
return articles[:max_results]
def summarize_tool(articles, model, prompt):
# Call language model (simulated)
summaries = []
for article in articles:
summaries.append(f"Summary of {
article['title']}: {
article['content'][:50]}...")
return summaries
def integrate_tool(summaries, model, prompt):
# Combine summaries (simulated)
return "AI is transforming healthcare and raising ethical concerns..."
2.6 技术细节
- 编程语言:Python,AutoGPT主要用Python实现。
- 框架:
- LangChain:用于管理工作流、工具调用和状态。
- Ray:支持并行执行复杂工作流。
- 工具集成:
- Web搜索:Serper.dev、Google Search API。
- 代码执行:Python解释器,运行脚本。
- 数据存储:SQLite、JSON文件存储中间结果。
- 状态管理:Agent维护一个“记忆”对象(比如Python字典),记录已完成的任务、当前数据等。
- 错误处理:工作流需包含异常捕获,比如API调用失败时切换工具。
2.7 高级特性
- 动态调整:工作流可以根据环境变化修改计划,比如发现数据不足时添加搜索步骤。
- 并行执行:某些子任务可以同时运行,比如搜索多个关键词。
- 模块化设计:块可以复用,比如“搜索块”可用于不同任务。
- 可扩展性:支持添加新工具或块,适应新场景。
2.8 实际应用场景
- 学术研究:搜索论文、总结内容、生成报告。
- 软件开发:编写代码、运行测试、生成文档。
- 制造业(ManuS):
- 输入:优化生产线的目标。
- 工作流:收集传感器数据 → 分析效率 → 调整参数 → 输出优化方案。