Agent如何实现自主性和通用性。

1. AI Agent简介

1.1 定义

AI Agent是一个自主智能体,能根据用户输入的目标,自主规划、执行和优化任务,生成最终结果。它超越传统聊天模型(如ChatGPT)的单次回答能力,能处理多步骤、工具依赖、动态调整的复杂任务。例如:

  • 任务:用户输入“写一篇AI伦理文章”。
  • Agent行为:搜索资料、整理信息、撰写草稿、校对优化,全程自动。
  • 制造业(ManuS):优化生产线,调整机器参数。

核心能力

  • 自主性:无需每步指导。
  • 工具集成:调用Web搜索、Python脚本、数据库等。
  • 动态适应:根据中间结果调整策略。
  • 协作性:多Agent系统支持团队分工。

1.2 典型AI Agent

  • AutoGPT
    • 用途:通用任务(研究、写作、代码生成)。
    • 技术:基于GPT-4,结合LangChain。
    • 特点:模块化Workflow,动态Prompt。
  • ManuS/OpenManuS
    • 用途:制造业(设计优化、生产调度)。
    • 技术:LLM、工业软件、RL。
    • 特点:结构化Workflow,专业化Prompt。
  • 其他:LangChain Agent、CrewAI、BabyAGI。

1.3 为什么学习AI Agent?

  • 前沿性:代表AI自动化未来。
  • 职业价值:Agent开发是AI工程师核心技能。
  • 实践性:适合学生通过项目入门。

2. AI Agent如何工作:自动完成指令的机制与通用性

Agent是如何自动完成用户输入的指令的?面对不同任务和工具,它如何实现通用性? 这里,我将从底层机制到实现细节,逐层拆解Agent的运行流程,特别说明其自主性通用性的来源。

2.1 什么是自动化和通用性?

  • 自动化:Agent能够接受用户指令,通过一系列自主执行的步骤(例如规划、执行、反思)处理指令,并在没有人类指导的情况下生成输出。
  • 通用性:Agent能够使用单一的、与任务无关的框架,处理任何任务,无论其领域如何(例如新闻摘要、编码、制造)。

这些特性通过一个闭环系统实现,该系统集成了大型语言模型(LLM)基于提示的推理模块化工作流工具集成状态管理反思机制。以下,我们将逐一剖析每个组件及其在实现自动化和通用性中的作用。

2.2 Agent的通用框架:闭环系统

人工智能Agent作为一个通用任务解决引擎,通过标准化的流水线处理任何用户指令。该流水线是一个闭环,循环执行直到任务完成,如以下基于文本的数据流图所示:

[用户指令]
      ↓
[解析指令] → 初始化状态
      ↓
[分解任务] → 生成子任务(提示 + LLM)
      ↓
[构建工作流] → 将子任务映射到模块
      ↓
[执行模块] → 调用工具,更新状态
      ↓
[反思] → 评估进展(提示 + LLM)
      ↓
[调整或输出] → 修改工作流或返回结果
      ↻ (若未完成,循环回到执行/反思)

该循环是自动化的,因为每个步骤都由算法和 LLM 推理驱动,无需初始指令后的任何人类输入。它是通用的,因为其组件(提示、工作流、工具)是任务无关的,通过 LLM 的通用知识和动态配置适应任何指令。

2.3 自动化的核心机制

自动化意味着Agent能够接受类似“编写俄罗斯方块代码”的指令,并在没有人类指导的情况下完成任务。以下是通过一系列算法步骤实现自动化的详细说明。

2.3.1 指令解析与状态初始化

  • 目的:将用户指令转换为结构化格式,并设置状态字典以跟踪进展。
  • 工作原理
    • Agent接收文本指令(例如“编写 Python 实现的俄罗斯方块代码”)。

    • 向 LLM 发送一个解析提示,以提取目标约束任务类型

      任务:解析用户指令。
      指令:{instruction}
      说明:

      1. 确定主要目标。
      2. 提取约束(例如格式、长度)。
      3. 分类任务类型(例如摘要、编码、优化)。
      4. 以 JSON 格式输出。
        示例:
      {
             
        "goal": "总结新闻",
        "constraints": {
             "length": 200, "topic": "人工智能"},
        "task_type": "摘要"
      }
      
    • 示例输出(针对“编写 Python 实现的俄罗斯方块代码”):

      {
             
        "goal": "编写 Python 代码",
        "constraints": {
             "language": "Python", "application": "俄罗斯方块"},
        "task_type": "编码"
      }
      
    • 状态初始化

      • Agent创建一个状态字典,用于存储指令并为后续数据预留空间。
      • 初始状态:state = {"instruction": instruction, "metadata": parsed_output, "data": {}}
      • data 字段为空,等待子任务结果。
      • 为何采用这种结构?
        • instruction:保留原始输入以供参考。
        • metadata:存储解析后的目标、约束和任务类型,用于规划。
        • data:一个灵活的字典,用于存储后续生成的动态键值对。
      • 伪代码
        def parse_instruction(instruction):
            prompt = generate_parsing_prompt(instruction)
            parsed_output = call_llm(prompt)
            state = {
                 
                "instruction": instruction,
                "metadata": parsed_output,
                "data": {
                 }
            }
            return state
        
  • 自动化:解析提示和 LLM 自主解释指令,无需人类定义的规则。
  • 通用性:提示是通用的,适用于任何指令(无论是编码、摘要还是优化),提取目标和约束。

2.3.2 任务分解

  • 你的问题Agent如何“知道”如何将任何任务分解为子任务,例如新闻任务的“搜索 → 过滤 → 摘要”或俄罗斯方块任务的“设计 → 编码 → 测试”?
  • 目的:将目标分解为可执行的子任务,形成计划的基础。
  • 工作原理
    • Agent使用解析后的元数据,向 LLM 发送一个任务分解提示

      任务:将目标分解为子任务。
      目标:{metadata[“goal”]}
      约束:{metadata[“constraints”]}
      任务类型:{metadata[“task_type”]}
      说明:

      1. 将目标分解为 3-5 个子任务,确保每个子任务具体且可执行。
      2. 为每个子任务建议一个工具或方法(例如 API、脚本、LLM)。
      3. 说明每个子任务的目的。
      4. 以 JSON 格式输出。
        示例:
      {
             
        "subtasks": [
          {
             
            "task": "搜索数据",
            "tool": "网页搜索 API",
            "purpose": "收集原始信息"
          }
        ]
      }
      
    • LLM 的作用

      • LLM 利用其通用知识(基于多样化文本训练)对任务进行推理。
      • 它使用**思维链(CoT)**推理:“要实现 X,我需要先做 A,然后 B,再 C。”
      • 例如:
        • 编码任务(“编写俄罗斯方块代码”):
          • 推理:“编写代码需要设计逻辑、实现代码和测试。俄罗斯方块需要游戏机制、用户界面和测试。”
          • 输出:
            {
                         
              "subtasks": [
                {
                         
                  "task": "设计游戏逻辑",
                  "tool": "GPT-4",
                  "purpose": "概述俄罗斯方块机制(例如网格、方块)"
                },
                {
                         
                  "task": "编写 Python 代码",
                  "tool": "GPT-4",
                  "purpose": "实现游戏逻辑和用户界面"
                },
                {
                         
                  "task": "测试代码",
                  "tool": "Python 解释器",
                  "purpose": "验证功能"
                }
              ]
            }
            
        • 学术报告任务(“撰写关于大型语言模型的学术综述报告”):
          • 推理:“综述报告需要收集论文、分析发现和撰写。学术工作需要可靠的来源。”
          • 输出:
            {
                         
              "subtasks": [
                {
                         
                  "task": "搜索学术论文",
                  "tool": "Google Scholar API",
                  "purpose": "收集可靠来源"
                },
                {
                         
                  "task": "分析论文发现",
                  "tool": "GPT-4",
                  "purpose": "提取关键见解"
                },
                {
                         
                  "task": "撰写报告",
                  "tool": "GPT-4",
                  "purpose": "将发现整合成连贯的文档"
                }
              ]
            }
            
    • 为何 LLM “知道”如何分解?

      • 预训练:LLM(例如 GPT-4)在大量数据集上训练,包括教程、工作流和领域特定文本,使其对任务结构有广泛理解。
      • 提示结构:提示强制要求一致的输出格式(3-5 个子任务、工具、目的),引导 LLM 生成可操作的计划。
      • 通用推理:LLM 通过推理目标的需求来推断子任务,类似于回答问题,但结构化为计划。
    • 自动化:分解完全由提示和 LLM 驱动,无需初始指令外的任何人类输入。

    • 通用性:提示是任务无关的,LLM 的知识使其能够分解任何目标,从编码到学术写作再到制造。

2.3.3 工作流生成

  • 目的:将子任务转换为可执行的工作流,即一系列定义动作和工具的模块化
  • 工作原理
    • Agent将每个子任务映射到一个预定义的块类型(例如搜索、计算、LLM、输出)。
    • 块类型是抽象且可重用的
      • search:调用 API(例如 Serper.dev、Google Scholar)。
      • compute:运行脚本(例如 Python)。
      • llm:调用 LLM(例如 GPT-4)。
      • output:返回结果。
    • Agent生成工作流配置(例如 JSON):
      [
        {
             
          "type": "block_type",
          "name": "人类可读名称",
          "parameters": {
             
            "tool": "工具名称",
            "input_key": "读取的状态键",
            "output_key": "写入的状态键",
            "prompt": "可选的 LLM 提示"
          }
        }
      ]
      
    • 伪代码
      def generate_workflow(subtasks):
          workflow = []
          for subtask 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱看烟花的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值