1. AI Agent简介
1.1 定义
AI Agent是一个自主智能体,能根据用户输入的目标,自主规划、执行和优化任务,生成最终结果。它超越传统聊天模型(如ChatGPT)的单次回答能力,能处理多步骤、工具依赖、动态调整的复杂任务。例如:
- 任务:用户输入“写一篇AI伦理文章”。
- Agent行为:搜索资料、整理信息、撰写草稿、校对优化,全程自动。
- 制造业(ManuS):优化生产线,调整机器参数。
核心能力:
- 自主性:无需每步指导。
- 工具集成:调用Web搜索、Python脚本、数据库等。
- 动态适应:根据中间结果调整策略。
- 协作性:多Agent系统支持团队分工。
1.2 典型AI Agent
- AutoGPT:
- 用途:通用任务(研究、写作、代码生成)。
- 技术:基于GPT-4,结合LangChain。
- 特点:模块化Workflow,动态Prompt。
- ManuS/OpenManuS:
- 用途:制造业(设计优化、生产调度)。
- 技术:LLM、工业软件、RL。
- 特点:结构化Workflow,专业化Prompt。
- 其他:LangChain Agent、CrewAI、BabyAGI。
1.3 为什么学习AI Agent?
- 前沿性:代表AI自动化未来。
- 职业价值:Agent开发是AI工程师核心技能。
- 实践性:适合学生通过项目入门。
2. AI Agent如何工作:自动完成指令的机制与通用性
Agent是如何自动完成用户输入的指令的?面对不同任务和工具,它如何实现通用性? 这里,我将从底层机制到实现细节,逐层拆解Agent的运行流程,特别说明其自主性和通用性的来源。
2.1 什么是自动化和通用性?
- 自动化:Agent能够接受用户指令,通过一系列自主执行的步骤(例如规划、执行、反思)处理指令,并在没有人类指导的情况下生成输出。
- 通用性:Agent能够使用单一的、与任务无关的框架,处理任何任务,无论其领域如何(例如新闻摘要、编码、制造)。
这些特性通过一个闭环系统实现,该系统集成了大型语言模型(LLM)、基于提示的推理、模块化工作流、工具集成、状态管理和反思机制。以下,我们将逐一剖析每个组件及其在实现自动化和通用性中的作用。
2.2 Agent的通用框架:闭环系统
人工智能Agent作为一个通用任务解决引擎,通过标准化的流水线处理任何用户指令。该流水线是一个闭环,循环执行直到任务完成,如以下基于文本的数据流图所示:
[用户指令]
↓
[解析指令] → 初始化状态
↓
[分解任务] → 生成子任务(提示 + LLM)
↓
[构建工作流] → 将子任务映射到模块
↓
[执行模块] → 调用工具,更新状态
↓
[反思] → 评估进展(提示 + LLM)
↓
[调整或输出] → 修改工作流或返回结果
↻ (若未完成,循环回到执行/反思)
该循环是自动化的,因为每个步骤都由算法和 LLM 推理驱动,无需初始指令后的任何人类输入。它是通用的,因为其组件(提示、工作流、工具)是任务无关的,通过 LLM 的通用知识和动态配置适应任何指令。
2.3 自动化的核心机制
自动化意味着Agent能够接受类似“编写俄罗斯方块代码”的指令,并在没有人类指导的情况下完成任务。以下是通过一系列算法步骤实现自动化的详细说明。
2.3.1 指令解析与状态初始化
- 目的:将用户指令转换为结构化格式,并设置状态字典以跟踪进展。
- 工作原理:
-
Agent接收文本指令(例如“编写 Python 实现的俄罗斯方块代码”)。
-
向 LLM 发送一个解析提示,以提取目标、约束和任务类型:
任务:解析用户指令。
指令:{instruction}
说明:- 确定主要目标。
- 提取约束(例如格式、长度)。
- 分类任务类型(例如摘要、编码、优化)。
- 以 JSON 格式输出。
示例:
{ "goal": "总结新闻", "constraints": { "length": 200, "topic": "人工智能"}, "task_type": "摘要" }
-
示例输出(针对“编写 Python 实现的俄罗斯方块代码”):
{ "goal": "编写 Python 代码", "constraints": { "language": "Python", "application": "俄罗斯方块"}, "task_type": "编码" }
-
状态初始化:
- Agent创建一个状态字典,用于存储指令并为后续数据预留空间。
- 初始状态:
state = {"instruction": instruction, "metadata": parsed_output, "data": {}}
。 data
字段为空,等待子任务结果。- 为何采用这种结构?
instruction
:保留原始输入以供参考。metadata
:存储解析后的目标、约束和任务类型,用于规划。data
:一个灵活的字典,用于存储后续生成的动态键值对。
- 伪代码:
def parse_instruction(instruction): prompt = generate_parsing_prompt(instruction) parsed_output = call_llm(prompt) state = { "instruction": instruction, "metadata": parsed_output, "data": { } } return state
-
- 自动化:解析提示和 LLM 自主解释指令,无需人类定义的规则。
- 通用性:提示是通用的,适用于任何指令(无论是编码、摘要还是优化),提取目标和约束。
2.3.2 任务分解
- 你的问题:Agent如何“知道”如何将任何任务分解为子任务,例如新闻任务的“搜索 → 过滤 → 摘要”或俄罗斯方块任务的“设计 → 编码 → 测试”?
- 目的:将目标分解为可执行的子任务,形成计划的基础。
- 工作原理:
-
Agent使用解析后的元数据,向 LLM 发送一个任务分解提示:
任务:将目标分解为子任务。
目标:{metadata[“goal”]}
约束:{metadata[“constraints”]}
任务类型:{metadata[“task_type”]}
说明:- 将目标分解为 3-5 个子任务,确保每个子任务具体且可执行。
- 为每个子任务建议一个工具或方法(例如 API、脚本、LLM)。
- 说明每个子任务的目的。
- 以 JSON 格式输出。
示例:
{ "subtasks": [ { "task": "搜索数据", "tool": "网页搜索 API", "purpose": "收集原始信息" } ] }
-
LLM 的作用:
- LLM 利用其通用知识(基于多样化文本训练)对任务进行推理。
- 它使用**思维链(CoT)**推理:“要实现 X,我需要先做 A,然后 B,再 C。”
- 例如:
- 编码任务(“编写俄罗斯方块代码”):
- 推理:“编写代码需要设计逻辑、实现代码和测试。俄罗斯方块需要游戏机制、用户界面和测试。”
- 输出:
{ "subtasks": [ { "task": "设计游戏逻辑", "tool": "GPT-4", "purpose": "概述俄罗斯方块机制(例如网格、方块)" }, { "task": "编写 Python 代码", "tool": "GPT-4", "purpose": "实现游戏逻辑和用户界面" }, { "task": "测试代码", "tool": "Python 解释器", "purpose": "验证功能" } ] }
- 学术报告任务(“撰写关于大型语言模型的学术综述报告”):
- 推理:“综述报告需要收集论文、分析发现和撰写。学术工作需要可靠的来源。”
- 输出:
{ "subtasks": [ { "task": "搜索学术论文", "tool": "Google Scholar API", "purpose": "收集可靠来源" }, { "task": "分析论文发现", "tool": "GPT-4", "purpose": "提取关键见解" }, { "task": "撰写报告", "tool": "GPT-4", "purpose": "将发现整合成连贯的文档" } ] }
- 编码任务(“编写俄罗斯方块代码”):
-
为何 LLM “知道”如何分解?
- 预训练:LLM(例如 GPT-4)在大量数据集上训练,包括教程、工作流和领域特定文本,使其对任务结构有广泛理解。
- 提示结构:提示强制要求一致的输出格式(3-5 个子任务、工具、目的),引导 LLM 生成可操作的计划。
- 通用推理:LLM 通过推理目标的需求来推断子任务,类似于回答问题,但结构化为计划。
-
自动化:分解完全由提示和 LLM 驱动,无需初始指令外的任何人类输入。
-
通用性:提示是任务无关的,LLM 的知识使其能够分解任何目标,从编码到学术写作再到制造。
-
2.3.3 工作流生成
- 目的:将子任务转换为可执行的工作流,即一系列定义动作和工具的模块化块。
- 工作原理:
- Agent将每个子任务映射到一个预定义的块类型(例如搜索、计算、LLM、输出)。
- 块类型是抽象且可重用的:
search
:调用 API(例如 Serper.dev、Google Scholar)。compute
:运行脚本(例如 Python)。llm
:调用 LLM(例如 GPT-4)。output
:返回结果。
- Agent生成工作流配置(例如 JSON):
[ { "type": "block_type", "name": "人类可读名称", "parameters": { "tool": "工具名称", "input_key": "读取的状态键", "output_key": "写入的状态键", "prompt": "可选的 LLM 提示" } } ]
- 伪代码:
def generate_workflow(subtasks): workflow = [] for subtask