一、简述
对于Minecraft玩家而言,寻找末地要塞无疑是一个较为痛苦的过程,末地要塞生成通常距离玩家出生点有一定的距离,因而一般来说需要消耗大量稀有的末影珍珠来用于指明方向,大大拖慢了玩家的通关速度,降低了游戏体验。其实通过末影珍珠指向末地的特性,加以简单的数学运算,可以利用1~3颗末影珍珠就相对准确的定位出末地坐标,从而降低成本。
二、原理概述
本计算器利用非常简单的数学模型,理论上两条直线交于一点就能计算出坐标,但由于目测坐标有一定误差,在此采用三条直线所围成的三角形(见示意图1),再取三角形中心(此简化计算使用重心)来达到减小误差的目的。
记录好游戏内X,Z及F坐标,建立坐标系,注意到游戏内中F为0度时是Z轴正方向,而-90度时是X轴负方向,考虑将F角度取负,以Z为横轴,X为纵轴建立笛卡尔坐标系。(见示意图2)
设记录的坐标点为 点1:(a1,b1), 点2:(a2,b2), 点3:(a3,b3)
有3组关于X,Z的线性方程组 X-kZ=b-ak (式中 k = tan(radians(-f)) )
解线性方程组,得到三交点坐标,记为ABC。
末地坐标 D≈(A+B+C)/3
三、实现方法
先利用python初步实现代码。
使用numpy解线性方程组。
import numpy as np
import math
# number=input("输入点坐标数")
x=[];y=[];face=[];A=[];b=[];k=[];r=[]
# for i in range(0,int(number)):
for i in range(0,3):
y.append(input("请输入X坐标:\n"))
x.append(input("请输入Z坐标:\n"))
face.append(input("请输入面向坐标:\n"))
k.append(math.tan(math.radians(-1*float(face[i]))))
# for i in range(0,int(number)):
for i in range(0,2):
A=[[1,-k[i]],[1,-k[i+1]]]
b=[(float(y[i])-float(x[i])*k[i]),(float(y[i+1])-float(x[i+1])*k[i+1])]
# print("x[i]:",x[i],"\n","y[i]:",y[i],"\n","k[i]:",k[i],"\n")
# print("x[i+1]:",x[i+1],"\n","y[i+1]:",y[i+1],"\n","k[i+1]:",k[i