Python学习日记1---简单的Minecraft末地要塞坐标计算器

本文介绍了一个利用Python、Numpy和Pyqt5实现的Minecraft末地要塞坐标计算器。通过记录3个末影珍珠的位置和角度,应用数学模型减少误差,简化寻找过程。文章详细阐述了原理、实现方法、游戏操作步骤以及后续优化的反思。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、简述  

       对于Minecraft玩家而言,寻找末地要塞无疑是一个较为痛苦的过程,末地要塞生成通常距离玩家出生点有一定的距离,因而一般来说需要消耗大量稀有的末影珍珠来用于指明方向,大大拖慢了玩家的通关速度,降低了游戏体验。其实通过末影珍珠指向末地的特性,加以简单的数学运算,可以利用1~3颗末影珍珠就相对准确的定位出末地坐标,从而降低成本。

二、原理概述

       本计算器利用非常简单的数学模型,理论上两条直线交于一点就能计算出坐标,但由于目测坐标有一定误差,在此采用三条直线所围成的三角形(见示意图1),再取三角形中心(此简化计算使用重心)来达到减小误差的目的。

示意图1
示意图1

 

       记录好游戏内X,Z及F坐标,建立坐标系,注意到游戏内中F为0度时是Z轴正方向,而-90度时是X轴负方向,考虑将F角度取负,以Z为横轴,X为纵轴建立笛卡尔坐标系。(见示意图2)

示意图2

 

设记录的坐标点为 点1(a1,b1), 点2(a2,b2), 点3(a3,b3)

有3组关于X,Z的线性方程组 X-kZ=b-ak (式中 k = tan(radians(-f)) )

解线性方程组,得到三交点坐标,记为ABC。

末地坐标 D≈(A+B+C)/3

三、实现方法

先利用python初步实现代码。

使用numpy解线性方程组。

import numpy as np
import math 
# number=input("输入点坐标数")
x=[];y=[];face=[];A=[];b=[];k=[];r=[]
# for i in range(0,int(number)):
for i in range(0,3):
    y.append(input("请输入X坐标:\n"))
    x.append(input("请输入Z坐标:\n"))
    face.append(input("请输入面向坐标:\n"))
    k.append(math.tan(math.radians(-1*float(face[i]))))
# for i in range(0,int(number)):
for i in range(0,2):
    A=[[1,-k[i]],[1,-k[i+1]]]
    b=[(float(y[i])-float(x[i])*k[i]),(float(y[i+1])-float(x[i+1])*k[i+1])]
    # print("x[i]:",x[i],"\n","y[i]:",y[i],"\n","k[i]:",k[i],"\n")
    # print("x[i+1]:",x[i+1],"\n","y[i+1]:",y[i+1],"\n","k[i+1]:",k[i
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值