http://blog.sciencenet.cn/home.php?mod=space&uid=677221&do=blog&quickforward=1&id=608619
1.
那么,有哪些传统的图像储存和压缩方法呢?
在数字世界中,信息量的多少用所需要的比特数(0或1)来衡量。表达信息时所需要的比特数目越小越好。也就是说,最好能将信息“压缩”一下。也叫做给信息“编码”。比如说吧,为了要储存下图中的只有黑白颜色的科赫曲线,我们可以采取如下右边的文字说明中所列举的三种方法编码:
图(10.1):用不同方法压缩图象的说明
第一种是最原始的方法,是将图形分成许多小格子(象素)。例如,我们可以将图(10.1)分成 256*640个小格子,也就是共163840个象素。然后,需要将这些象素所具有的信息储存起来。因为图(10.1)只是黑白图形,每一个象素的信息不是‘黑’,就是‘白’,正好对应于比特的‘0’或‘1’。这意味着,一个象素需要一个比特来表示。因此,要用这种编码方法储存整个图形,需要的比特数就等于163840。第二种方法是将图形看作诺干点和线。上面的图中共有256条直线,经由256个点逐次连成。所以,只要储存这256个点的位置就可以了。因为每个点在图中的位置需要两个整数表示,而每个整数都需要32个比特来表示。因此,这第二种编码方法需要的比特数是256*2*32=16384。显然,第二种方法比第一种方法更经济合算,因为它将信息压缩了10倍。
如果我们把这个图形用它的分形的初始值及迭代函数来编码的话,就是上图中的第三种方法。使用第三种方法,需要储存的信息只包括4次线性变换迭代以及2个初始点位置。将这些数值换算成比特数,只需要928个比特就可以了。比较原始的163840比特而言,就等于信息被压缩了100倍以上。
有关分形技术用于图像压缩,张三谈起了他自己的经验:在储存曼德勃罗集图形时,如果存为(BMP)文件的话,文件的大小为430*8千比特,这种方法就相当于上面所说的第一种方法。而如果将它存为(GIF)文件的话,文件的大小仅为30*8千比特。也就是说,在这种情形下,gif格式相对于bmp格式,信息压缩了14.3倍。
张三说:“可是gif格式也太大了啊,我用程序生成这个图形,存的信息不过是一个简单方程,几个系数,就像刚才的科赫曲线,最多几个千比特,就足够了呀。”
王二又兴奋起来:“对啦,生物体一定是把某种类似的、最优化的编码存到基因,DNA里面了……大自然往往做得比人工更为精致和巧妙……”
李四却很感兴趣分形图像压缩,说是曾经做过用傅立叶变换压缩声音信号的问题,先和两位一起复习复习。
张三附合:“对,我们先不管图像信号,声音信号的处理更基本和简单一些。”
其实,不论是声音还是图像信号,最原始的信息都可看作是强度关于时间(或空间)的函数。如我们上面说到的,一个固定的黑白图像可用在每一个像素位置的光强度(0或1)表示,一个原始的声音信息则用在一系列的时间点测量的声音强度来表示。所以,最原始的储存方法就是:把声音的强度按不同时间点列成一个表储存起来,比如说,转换成电信号保存到磁带上。以后便可以将磁带上的数值读出来,再转换成声音信号。
这种储存声音的原始方法类似于刚才谈到图像编码的第一种方法。可以说是完整的储存方法,但它并不总是最好的,也不是最有效的方法。
量子力学的规律揭示了微观世界的不可预测性,混沌理论则从根本上否定了事件的确定性,把非决定论推至成熟。混沌现象表明,避开微观世界的量子效应不说, 即使在只遵循牛顿定律的、通常尺度下的、完全决定论的系统中,也可以出现随机的行为。除了广泛存在的外在随机性之外,确定论系统本身也普遍具有内在的随机性。也就是说, 混沌能产生有序,有序中也能产生随机的、不可预测的混沌结果。即使某些决定的系统,也表现出复杂的、奇异的、非决定的、不同于经典理论可预测的那种长期行为。
从另一个角度说,混沌理论揭示了有序与无序的统一、确定性与随机性的统一,使得决定论和概率论, 这两大长期对立,互不相容, 对于统一的自然界的描述体系之间的鸿沟正在逐步消除。有人将混沌理论与相对论、量子力学同列为二十世纪的最伟大的三次科学革命, 认为牛顿力学的建立标志着科学理论的开端, 而包括相对论、量子物理、混沌理论三大革命的完成, 则象征着科学理论的成熟。
现在回到王二的问题:什么叫吸引子?或者说,什么叫‘动力系统’的吸引子?
那我们首先得弄清楚‘系统’这个概念。
什么是‘系统’呢? 简单地说, 系统是一种数学模型。是一种用以描述自然界及社会中各类事件的, 由一些变量及数个方程构成的一种数学模型。世界上的事物尽管千变万化, 繁杂纷纭, 但在数学家们的眼中, 在一定的条件下, 都不外乎是由几个变量和这些变量之间的关系组成的‘系统’。在这些‘系统’模型中, 变量的数目或多或少, 服从的规律可简可繁, 变量的性质也许是确定的, 也许是随机的, 每个系统又可能包含另外的‘子系统’。
由‘系统’性质之不同,又有了诸如‘决定性的系统’ 、‘随机系统’、‘封闭系统’、‘开放系统’ 、‘线性系统’、‘非线性系统’、‘稳定系统’、‘简单系统’、‘复杂系统’等等一类的名词。
例如: 地球环绕太阳的运动, 可近似为一个简单的二体系统;密闭罐中的化学反应, 可当成趋于稳定状态的封闭系统;每一个生物体,都是一个自适应的开放系统;人类社会,股票市场,则可作为复杂的、随机性系统的例子。
无论是何种系统,大多数的情形下,我们感兴趣的是系统对时间的变化,称其为‘动力系统’研究。这是理所当然的,谁会去管那种固定不变的系统呢?研究系统对时间变化的一个有效而直观的方法就是利用系统的‘相空间’,一个系统中的所有独立变量构成的空间叫做系统的‘相空间’。相空间中的一个点,确定了系统的一个‘状态’,对应于一组给定的独立变量值。研究状态点随着时间在相空间中的‘运动’情形,则可看出系统对时间的变化趋势,以观察混沌理论中最感兴趣的‘动力系统的长期行为’。
状态点在相空间中运动,最后趋向的极限图形,就叫做该系统的‘吸引子’。
换句通俗的话说,吸引子就是一个系统的‘最后归属’。
举几个简单例子,更易于说明问题。一个被踢出去的足球,在空中飞了一段距离之后,掉到地上,又在草地上滚了一会儿,然后静止停在地上,如果没有其它情况发生,静止不动就是它的最后归属。因此,这段足球运动的吸引子,是它的相空间中的一个固定点。
人造卫星离开地面被发射出去之后,最后进入预定的轨道,绕着地球作二维周期运动,它和地球近似构成的二体系统的吸引子,便是一个椭圆。
两种颜色的墨水被混合在一起,它们经过一段时间的扩散,互相渗透,最后趋于一种均匀混合的动态平衡状态,如果不考虑分子的布朗运动,这个系统的最后归属-吸引子,也应该是相空间的一个固定点。
在发现‘混沌现象’之前,也可以粗略地说,在洛伦茨研究他的系统的最后归属之前,吸引子的形状可归纳为如下左图所示的几种‘经典吸引子’,也称‘正常吸引子’:
图(13.1)经典吸引子和奇异吸引子
李四则认为,数学解决不了决定论还是非决定论的问题。就物理学的角度而言,起码有两点证据,不支持决定论。一是已经有100多年历史的量子理论的发展。量子物理中的不确定原理表明:位置和动量不可能同时确定,时间和能量也不可能同时确定。因此,初始条件是不确定的,永远不可能有所谓‘准确的初始条件’,当然,结果也就不可能确定。这是其一。
另外,经典的物理规律,大多数都是用微分方程组的数学模型来描述的。建立微分方程的目的,本来就是为了研究那些确定的、有限维的、可微的演化过程。因此,微分方程的理论是机械决定论的基础。但是,微分方程组不一定就真是描述世界的最好方法,事实上,在牛顿力学以外的大部分物理学,不能只用微分方程来研究,而对大自然中广泛存在的分形结构、物理中的湍流、布朗运动、生命形成过程,等等,微分方程理论更是力不从心。既然作为决定论基础的微分方程并不能用来解决世界的大多数问题,“皮之不存,毛将焉附”。基础没有了,决定论失去了依托,拉普拉斯妖还有话说吗?恐怕只能躲在天国里唉声叹气了!
啊,原来这个分岔图中隐藏着两个常数!费根鲍姆深知物理常数对物理理论的重要,一个新概念、新理论的诞生往往伴随着新常数的出现,比如牛顿力学中的万有引力常数G,量子力学中的普朗克常数h,相对论中的光速c……诸如此类的例子太多了。新常数的发现也许能为新的革命性的物理理论打开新窗口。想到这儿,费根鲍姆欣喜若狂,立即打电话给他的父母,激动地告诉他们他发现了一些很不平凡的东西,他就要一鸣惊人了。